Patents by Inventor Shogo Mochizuki

Shogo Mochizuki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10325815
    Abstract: A method of forming multiple vertical transport fin field effect transistors (VT FinFETs) having different channel lengths, including, forming a vertical fin on a first region of a substrate and a vertical fin on a second region of the substrate, forming a cover block on the vertical fin on the second region of the substrate, forming a first bottom source/drain on the first region of the substrate, wherein the first bottom source/drain covers a lower portion of the vertical fin on the first region, removing the cover block, and forming a second bottom source/drain in the second region of the substrate, wherein the second bottom source/drain is below the surface of the substrate, wherein the second bottom source/drain does not cover a lower portion of the vertical fin on the second region.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: June 18, 2019
    Assignee: International Business Machines Corporation
    Inventors: Ruqiang Bao, Choonghyun Lee, Shogo Mochizuki, Chun W. Yeung
  • Patent number: 10326017
    Abstract: In an embodiment, this invention relates to a vertical field-effect transistor component including a bottom source-drain layer and a method of creating the same. The method of forming a bottom source-drain layer of a vertical field-effect transistor component can comprise forming an anchor structure on a substrate. A sacrificial layer can be deposited on a middle region of the substrate and a channel layer can be deposited on the sacrificial layer. A plurality of vertical fins can be formed on the substrate and the sacrificial layer can be removed such that the plurality of vertical fins in the middle region form a plurality of floating fins having a gap located between the plurality of floating fins and the substrate. The bottom source-drain layer can then be formed such that the bottom source-drain layer fills in the gap.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: June 18, 2019
    Assignee: International Business Machines Corporation
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Fee Li Lie, Shogo Mochizuki, Junli Wang
  • Publication number: 20190181052
    Abstract: A method is presented for forming a semiconductor structure. The method includes forming a silicon (Si) channel for a first device, forming a first interfacial layer over the Si channel, forming a silicon-germanium (SiGe) channel for a second device, forming a second interfacial layer over the SiGe channel, and selectively removing germanium oxide (GeOx) from the second interfacial layer by applying a combination of hydrogen (H2) and hydrogen chloride (HCl). The second interfacial is silicon germanium oxide (SiGeOx) and removal of the GeOx results in formation of a pure silicon dioxide (SiO2) layer.
    Type: Application
    Filed: February 4, 2019
    Publication date: June 13, 2019
    Inventors: Ruqiang Bao, Hemanth Jagannathan, ChoongHyun Lee, Shogo Mochizuki
  • Publication number: 20190181012
    Abstract: Techniques for forming a metastable phosphorous P-doped silicon Si source drain contacts are provided. In one aspect, a method for forming n-type source and drain contacts includes the steps of: forming a transistor on a substrate; depositing a dielectric over the transistor; forming contact trenches in the dielectric that extend down to source and drain regions of the transistor; forming an epitaxial material in the contact trenches on the source and drain regions; implanting P into the epitaxial material to form an amorphous P-doped layer; and annealing the amorphous P-doped layer under conditions sufficient to form a crystalline P-doped layer having a homogenous phosphorous concentration that is greater than about 1.5×1021 atoms per cubic centimeter (at./cm3). Transistor devices are also provided utilizing the present P-doped Si source and drain contacts.
    Type: Application
    Filed: February 1, 2019
    Publication date: June 13, 2019
    Inventors: Oleg Gluschenkov, Zuoguang Liu, Shogo Mochizuki, Hiroaki Niimi, Tenko Yamashita, Chun-chen Yeh
  • Patent number: 10319836
    Abstract: A vertical transistor structure is provided that includes a bottom source/drain structure that includes a doped semiconductor buffer layer that contains a first dopant species having a first diffusion rate, and an epitaxial doped semiconductor layer that contains a second dopant species that has a second diffusion rate that is less than the first diffusion rate. During a junction anneal, the first dopant species readily diffuses from the doped semiconductor buffer layer into a pillar portion of a base semiconductor substrate to provide the bottom source/drain extension and bottom source/drain junction. No diffusion overrun is observed. During the junction anneal, the second dopant species remains in the epitaxial doped semiconductor layer providing a low resistance contact. The second dopant species does not interfere with the bottom source/drain extension and bottom source/drain junction due to limited diffusion of the second dopant species.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: June 11, 2019
    Assignee: International Business Machines Corporation
    Inventors: Alexander Reznicek, Shogo Mochizuki
  • Patent number: 10319643
    Abstract: Provided is a method for forming a semiconductor structure. In embodiments of the invention, the method includes depositing a strain relaxed buffer (SRB) layer over a substrate; recessing the SRB layer on a first region of the structure; and forming a first semiconductor layer on the first region of the structure and depositing one or more mandrels over the first semiconductor layer of the first region of the structure. The method further includes depositing a spacer layer over the one or more mandrels, the spacer layer including vertical portions and horizontal portions; and removing the one or more mandrels and the horizontal portions of the spacer layer. The method further includes performing a reactive ion etch to remove material unprotected by the spacer to form a first channel for a p-type vertical field effect transistor from the first semiconductor layer. The first channel has a compressive strain.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: June 11, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Choonghyun Lee, Kangguo Cheng, Juntao Li, Shogo Mochizuki
  • Publication number: 20190172928
    Abstract: A method of forming a spacer for a vertical transistor is provided. The method includes forming a fin structure on a substrate, depositing a first spacer on exposed surfaces of the substrate to define gaps between the first spacer and the fin structure and depositing a second spacer on the exposed surfaces of the substrate in at least the gaps.
    Type: Application
    Filed: January 16, 2019
    Publication date: June 6, 2019
    Inventors: Oleg Gluschenkov, Sanjay C. Mehta, Shogo Mochizuki, Alexander Reznicek
  • Patent number: 10312349
    Abstract: During a fabrication of a semiconductor device, a recess is created in a substrate material disposed along a direction of a plane of fabrication. A layer of a removable material is formed in the recess. A bottom layer is formed above the layer of removable material. A vertical channel above the bottom layer is formed in a direction substantially orthogonal to the direction of the plane of fabrication. A gate is formed using a metal above the bottom layer and relative to the vertical channel. A tunnel is created under the bottom layer by removing the removable material from under the bottom layer such that the backside of the bottom layer forms a ceiling of the tunnel. The tunnel is filled using a conductive material such that the conductive material makes electrical contact with the backside of the bottom layer.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: June 4, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Shogo Mochizuki, Junli Wang
  • Patent number: 10312377
    Abstract: Transistors including one or more semiconductor fins formed on a substrate. The one or more semiconductor fins are thinner in a channel region than in source and drain regions and have rounded corners. There is a gate stack on the channel region of the one or more semiconductor fins.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: June 4, 2019
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, RENESAS ELECTRONICS CORPORATION
    Inventors: Veeraraghavan S. Basker, Shogo Mochizuki, Tenko Yamashita, Chun-Chen Yeh
  • Publication number: 20190157457
    Abstract: After forming a gate structure over a semiconductor fin that extends upwards from a semiconductor substrate portion, a sigma cavity is formed within the semiconductor fin on each side of the gate structure. A semiconductor buffer region composed of an un-doped stress-generating semiconductor material is epitaxially growing from faceted surfaces of the sigma cavity. Finally, a doped semiconductor region composed of a doped stress-generating semiconductor material is formed on the semiconductor buffer region to completely fill the sigma cavity. The doped semiconductor region is formed to have substantially vertical sidewalls for formation of a uniform source/drain junction profile.
    Type: Application
    Filed: December 28, 2018
    Publication date: May 23, 2019
    Inventors: Dechao Guo, Hemanth Jagannathan, Shogo Mochizuki, Gen Tsutsui, Chun-Chen Yeh
  • Patent number: 10297614
    Abstract: The capacitance between gate structures and source/drain contacts of FinFET devices is reduced by the incorporation of inner spacers in the top portions of the gate structures. A replacement metal gate process used in the fabrication of such devices includes formation of the inner spacers following partial removal of dummy gate material. The remaining dummy gate material is then removed and replaced with gate dielectric and metal gate material.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: May 21, 2019
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Oleg Gluschenkov, Shogo Mochizuki, Alexander Reznicek
  • Patent number: 10297507
    Abstract: A vertical FET structure includes a bottom source-drain region disposed on a substrate of the first type; a recessed first heterostructure layer disposed on the bottom source-drain region; a first fin disposed on the bottom source-drain region; a dielectric inner spacer disposed on the recessed first heterostructure; an outer spacer disposed on the inner spacer; a high-k and metal gate layer disposed on the outer spacer, the inner spacer, and the channel layer; an interlayer dielectric oxide disposed between the first fin and the outer spacer; a recessed second heterostructure layer disposed on top of the substrate of the first type and high-k and metal gate layer; a dielectric inner spacer disposed on the recessed second heterostructure layer; and a top source-drain region layer disposed on the dielectric inner spacer and recessed second heterostructure layer resulting in the vertical FET. A method for forming the vertical FET is also provided.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: May 21, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Shogo Mochizuki, Tenko Yamashita, Chen Zhang
  • Publication number: 20190148549
    Abstract: A semiconductor structure is provided that includes a bulk semiconductor substrate of a first semiconductor material. The structure further includes a plurality of fin pedestal structures of a second semiconductor material located on the bulk semiconductor substrate of the first semiconductor material, wherein the second semiconductor material is different from the first semiconductor material. In accordance with the present application, each fin pedestal structure includes a pair of spaced apart semiconductor fins of the second semiconductor material.
    Type: Application
    Filed: December 21, 2018
    Publication date: May 16, 2019
    Inventors: Veeraraghavan S. Basker, Oleg Gluschenkov, Shogo Mochizuki, Alexander Reznicek
  • Publication number: 20190148299
    Abstract: A technique relates to fabricating a semiconductor device. A contact trench is formed in an inter-level dielectric layer. The contact trench creates an exposed portion of a semiconductor substrate through the inter-level dielectric layer. A gate stack is on the semiconductor substrate, and the inter-level dielectric layer is adjacent to the gate stack and the semiconductor substrate. A source/drain region is formed in the contact trench such that the source/drain region is on the exposed portion of the semiconductor substrate. Tin is introduced in the source/drain region to form an alloyed layer on top of the source/drain region, and the alloyed layer includes the tin and a source/drain material of the source/drain region. A trench layer is formed in the contact trench such that the trench layer is on top of the alloyed layer. A metallic liner layer is formed on the trench layer and the inter-level dielectric layer.
    Type: Application
    Filed: December 20, 2018
    Publication date: May 16, 2019
    Inventors: Oleg Gluschenkov, Jiseok Kim, Zuoguang Liu, Shogo Mochizuki, Hiroaki Niimi
  • Publication number: 20190148377
    Abstract: A semiconductor material layer is deposited on a p-type source/drain region of a p-type transistor device and an n-type source/drain region of an n-type transistor device. The p-type device transistor device and the n-type transistor device are formed on a substrate of a semiconductor device. The semiconductor device includes a trench formed through an inter-level dielectric layer. The inter-level dielectric layer is formed over the n-type transistor device and the p-type transistor device. The trench exposes the p-type source/drain region of the p-type transistor device and the n-type source/drain region of the n-type transistor device. An element is implanted in the semiconductor material layer to form an amorphous layer on p-type source drain region and the n-type source/drain region. The amorphous layer is annealed to form a first metastable alloy layer upon the p-type source/drain region and a second metastable alloy layer upon the n-type source/drain region.
    Type: Application
    Filed: December 20, 2018
    Publication date: May 16, 2019
    Applicant: International Business Machines Corporation
    Inventors: Oleg Gluschenkov, Shogo Mochizuki, Hiroaki Niimi, Tenko Yamashita, Chun-chen Yeh
  • Patent number: 10290747
    Abstract: MIS capacitors are formed using a finned semiconductor structure. A highly doped region including the fins is formed within the structure and forms one plate of a MIS capacitor. A metal layer forms a second capacitor plate that is separated from the first plate by a high-k capacitor dielectric layer formed directly on the highly doped fins. Contacts are electrically connected to the capacitor plates. A highly doped implantation layer having a conductivity type opposite to that of the highly doped region provides electrical isolation within the structure.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: May 14, 2019
    Assignee: International Business Machines Corporation
    Inventors: Keith E. Fogel, Pouya Hashemi, Shogo Mochizuki, Alexander Reznicek
  • Publication number: 20190140080
    Abstract: A vertical field-effect transistor (FET) device is fabricated with a self-aligned bottom insulating spacer for improved electrostatic control. A semiconductor fin is formed on a semiconductor substrate. A lower source/drain region, which is formed of a first type of epitaxial semiconductor material, is epitaxially grown on a surface of the substrate in contact with a bottom portion of the semiconductor fin. A sacrificial epitaxial semiconductor layer is epitaxially grown on top of the lower source/drain region, wherein the sacrificial epitaxial semiconductor layer is formed of a second type of epitaxial semiconductor material which is different from the first type of epitaxial semiconductor material. The sacrificial epitaxial semiconductor layer is selectively oxidized to form a self-aligned bottom insulating spacer comprising an oxide layer. A gate structure is formed contact with sidewalls of the semiconductor fin.
    Type: Application
    Filed: November 6, 2017
    Publication date: May 9, 2019
    Inventors: Choonghyun Lee, Shogo Mochizuki
  • Patent number: 10283636
    Abstract: A transistor in an integrated circuit device is formed using fabrication processes that include techniques to create a strain in the channel material, thereby improving the performance of the transistor. In one or more embodiments, an initial transistor structure is formed including a substrate, a dummy fin, and a hard mask. The dummy fin structure is narrowed. A channel is epitaxially grown on the dummy fin structure to create a strain on the channel. A first gate stack is formed over the channel. The hard mask and dummy fin are removed. A second gate stack is formed over the channel. Excess material is removed from the second gate stack. The formation of the transistor is finalized using a variety of techniques.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: May 7, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Shogo Mochizuki, Junli Wang
  • Patent number: 10276695
    Abstract: A method for manufacturing a semiconductor device includes forming a stacked configuration of first and second semiconductor layers on a semiconductor substrate, wherein the stacked configuration comprises a repeating arrangement of a second semiconductor layer stacked on a first semiconductor layer, forming a plurality of dummy gates spaced apart from each other on the stacked configuration, wherein the plurality of dummy gates cover a portion of the stacked configuration in a channel region, performing an implantation of a semiconductor material on exposed portions of the stacked configuration in a source/drain region, wherein the implantation increases a concentration of the semiconductor material in the exposed portions of the stacked configuration, and selectively removing first semiconductor layers having an increased concentration of the semiconductor material from the source/drain region, wherein the removed first semiconductor layers correspond in position to the first semiconductor layers in the cha
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: April 30, 2019
    Assignee: International Business Machines Corporation
    Inventors: Robin Hsin-Kuo Chao, Michael A. Guillorn, Chi-Chun Liu, Shogo Mochizuki, Chun W. Yeung
  • Patent number: 10276687
    Abstract: A method of fabricating a semiconductor device includes forming a fin on a substrate. Source/drain regions are arranged on the substrate on opposing sides of the fin. The method includes depositing a semiconductor layer on the source/drain regions. The method includes depositing a germanium containing layer on the fin and the semiconductor layer. The method further includes applying an anneal operation configured to chemically react the semiconductor layer with the germanium containing layer and form a silicon oxide layer.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: April 30, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Hemanth Jagannathan, Choonghyun Lee, Shogo Mochizuki