Patents by Inventor Shogo Mochizuki

Shogo Mochizuki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10453940
    Abstract: According to one or more embodiments of the present invention, a method for forming a fin structure for a semiconductor device includes forming a fin. The method further includes recessing a first portion of the fin to form a recess in the fin. The method further includes forming a channel region in the first portion of the fin. The method further includes forming an extension region on a second portion of the fin, and wherein defects are collected within the extension regions from the channel region in the first portion of the fin.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: October 22, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Shogo Mochizuki, Choonghyun Lee, Juntao Li, Kangguo Cheng
  • Patent number: 10453824
    Abstract: A method for manufacturing a semiconductor device includes forming a plurality of silicon germanium and silicon layers on a semiconductor substrate in a stacked configuration comprising a repeating arrangement of a silicon layer stacked on a silicon germanium layer. The stacked configuration is patterned into a plurality of patterned stacks spaced apart from each other. The patterning forms a plurality of recessed portions in the substrate. In the method, the silicon germanium layers are etched to remove portions of the silicon germanium layers from exposed lateral sides of the silicon germanium layers, and inner spacer layers are formed in place of the removed portions. A plurality of lower epitaxial layers are grown in the recessed portions. A plurality of epitaxial source/drain regions are grown from the lower epitaxial layers and from exposed lateral sides of the silicon layers.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: October 22, 2019
    Assignee: International Business Machines Corporation
    Inventors: Shogo Mochizuki, Chun Wing Yeung
  • Publication number: 20190319116
    Abstract: Methods of fabrication and semiconductor structures includes vertical transport field effect transistors (VTFETs) including a top source/drain extension formed with a sacrificial doped layer. The sacrificial doped layer provides the doping source to form the extension and protects the top of the fin during fabrication so as to prevent thinning, among other advantages.
    Type: Application
    Filed: April 12, 2018
    Publication date: October 17, 2019
    Inventors: Choonghyun Lee, Kangguo Cheng, Juntao Li, Shogo Mochizuki
  • Publication number: 20190319114
    Abstract: A method of fabricating a semiconductor device includes forming a fin on a substrate. Source/drain regions are arranged on the substrate on opposing sides of the fin. The method includes depositing a semiconductor layer on the source/drain regions. The method includes depositing a germanium containing layer on the fin and the semiconductor layer. The method further includes applying an anneal operation configured to chemically react the semiconductor layer with the germanium containing layer and form a silicon oxide layer.
    Type: Application
    Filed: June 27, 2019
    Publication date: October 17, 2019
    Inventors: RUQIANG BAO, HEMANTH JAGANNATHAN, CHOONGHYUN LEE, SHOGO MOCHIZUKI
  • Publication number: 20190319094
    Abstract: Vertical field effect transistor (VFET) structures and methods of fabrication with improved junction sharpness and reduced parasitic capacitance between the top source or drain and the surrounding metal gate includes a non-uniform top spacer in the top source or drain formed by an oxidation process. The top spacer has a thickness that is thinner at an interface between the top source or drain region and the vertically oriented channel region of the fin structure relative to the thickness of the top spacer layer away from the interface.
    Type: Application
    Filed: April 17, 2018
    Publication date: October 17, 2019
    Inventors: Kangguo Cheng, Juntao Li, Choonghyun Lee, Shogo Mochizuki
  • Publication number: 20190318970
    Abstract: A method is presented for forming a transistor having reduced parasitic contact resistance. The method includes forming a first device over a semiconductor structure, forming a second device adjacent the first device, forming an ILD over the first and second devices, and forming recesses within the ILD to expose the source/drain regions of the first device and the source/drain regions of the second device. The method further includes forming a first dielectric layer over the ILD and the top surfaces of the source/drain regions of the first and second devices, a chemical interaction between the first dielectric layer and the source/drain regions of the second device resulting in second dielectric layers formed over the source/drain regions of the second device, and forming an epitaxial layer over the source/drain regions of the first device after removing remaining portions of the first dielectric layer.
    Type: Application
    Filed: June 20, 2019
    Publication date: October 17, 2019
    Inventors: Choonghyun Lee, Shogo Mochizuki, Chun Wing Yeung, Hemanth Jagannathan
  • Publication number: 20190318969
    Abstract: A method is presented for forming a transistor having reduced parasitic contact resistance. The method includes forming a first device over a semiconductor structure, forming a second device adjacent the first device, forming an ILD over the first and second devices, and forming recesses within the ILD to expose the source/drain regions of the first device and the source/drain regions of the second device. The method further includes forming a first dielectric layer over the ILD and the top surfaces of the source/drain regions of the first and second devices, a chemical interaction between the first dielectric layer and the source/drain regions of the second device resulting in second dielectric layers formed over the source/drain regions of the second device, and forming an epitaxial layer over the source/drain regions of the first device after removing remaining portions of the first dielectric layer.
    Type: Application
    Filed: April 16, 2018
    Publication date: October 17, 2019
    Inventors: Choonghyun Lee, Shogo Mochizuki, Chun Wing Yeung, Hemanth Jagannathan
  • Patent number: 10439043
    Abstract: A method of fabricating a semiconductor device includes forming a fin on a substrate. Source/drain regions are arranged on the substrate on opposing sides of the fin. The method includes depositing a semiconductor layer on the source/drain regions. The method includes depositing a germanium containing layer on the fin and the semiconductor layer. The method further includes applying an anneal operation configured to chemically react the semiconductor layer with the germanium containing layer and form a silicon oxide layer.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: October 8, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Hemanth Jagannathan, Choonghyun Lee, Shogo Mochizuki
  • Patent number: 10439063
    Abstract: A self-limiting etch is used to provide a semiconductor base located between a semiconductor substrate and a semiconductor fin. The semiconductor base has an upper portion, a lower portion and a midsection. The midsection has a narrower width than the lower and upper portions. A bottom source/drain structure is grown from surfaces of the semiconductor substrate and the semiconductor base. The bottom source/drain structure has a tip region that contacts the midsection of the semiconductor base. The bottom source/drain structures on each side of the semiconductor fin are in close proximity to each other and they have increased volume. Reduced access resistance may also be achieved since the bottom source/drain structure has increased volume.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: October 8, 2019
    Assignee: International Business Machines Corporation
    Inventors: Alexander Reznicek, Shogo Mochizuki, Jingyun Zhang, Xin Miao
  • Patent number: 10439049
    Abstract: A nanosheet transistor device having reduced access resistance is fabricated by recessing channel nanosheets and replacing the channel material with epitaxially grown doped extension regions. Sacrificial semiconductor layers between the channel nanosheets are selectively removed without damaging source/drain regions epitaxially grown on the extension regions. The sacrificial semiconductor layers are replaced by gate dielectric and gate metal layers.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: October 8, 2019
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Shogo Mochizuki, Alexander Reznicek
  • Patent number: 10431502
    Abstract: A method is presented for forming a transistor having reduced parasitic contact resistance. The method includes forming a first device over a semiconductor structure, forming a second device adjacent the first device, forming an ILD over the first and second devices, and forming recesses within the ILD to expose the source/drain regions of the first device and the source/drain regions of the second device. The method further includes forming a first dielectric layer over the ILD and the top surfaces of the source/drain regions of the first and second devices, a chemical interaction between the first dielectric layer and the source/drain regions of the second device resulting in second dielectric layers formed over the source/drain regions of the second device, and forming an epitaxial layer over the source/drain regions of the first device after removing remaining portions of the first dielectric layer.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: October 1, 2019
    Assignee: International Business Machines Corporation
    Inventors: Choonghyun Lee, Shogo Mochizuki, Chun Wing Yeung, Hemanth Jagannathan
  • Patent number: 10431503
    Abstract: A method for forming a semiconductor device includes forming a fins on a substrate, forming a sacrificial gate stack over a channel region of the fins, a source/drain region with a first material on the fins, a first cap layer with a second material over the source/drain region, and a second cap layer with a third material on the first cap layer. A dielectric layer is deposited over the second cap layer. The sacrificial gate stack is removed to expose a channel region of the fins. A gate stack is formed over the channel region of the fins. A portion of the dielectric layer is removed to expose the second cap layer. The second cap layer and the first cap layer are removed to expose the source/drain region. A conductive material is deposited on the source/drain region.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: October 1, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Praneet Adusumilli, Zuoguang Liu, Shogo Mochizuki, Jie Yang, Chun W. Yeung
  • Patent number: 10418288
    Abstract: Techniques for forming VFETs having different gate lengths (and optionally different gate pitch and/or gate oxide thickness) on the same wafer are provided. In one aspect, a method of forming a VFET device includes: patterning fins in a wafer including a first fin(s) patterned to a first depth and a second fin(s) patterned to a second depth, wherein the second depth is greater than the first depth; forming bottom source/drains at a base of the fins; forming bottom spacers on the bottom source/drains; forming gates alongside the fins, wherein the gates formed alongside the first fin(s) have a first gate length Lg1, wherein the gates formed alongside the second fin(s) have a second gate length Lg2, and wherein Lg1<Lg2; forming top spacers over the gates; and forming top source/drains over the top spacers. A VFET is also provided.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: September 17, 2019
    Assignee: International Business Machines Corporation
    Inventors: Ruqiang Bao, Shogo Mochizuki, Choonghyun Lee, Chun Wing Yeung
  • Publication number: 20190279913
    Abstract: Embodiments of the invention are directed to a method and resulting structures for a complementary metal oxide semiconductor (CMOS) having source and drain contacts formed using trench solid and liquid phase epitaxy (SPE/LPE). In a non-limiting embodiment of the invention, an NFET is formed on a substrate. The NFET includes a p-type semiconductor fin vertically extending from an n-type bottom source or drain region of the substrate. A PFET is also formed on the substrate. The PFET includes an n-type semiconductor fin vertically extending from a p-type bottom source or drain region of the substrate. A first gate is formed over a channel region of the p-type semiconductor fin and a second gate is formed over a channel region of the n-type semiconductor fin. The first gate and the second gate include a common dipole layer. The NFET and PFET each include a linear threshold voltage of about 150 mV to about 250 mV and a difference between the linear threshold voltages of the NFET and PFET is less than about 50 mV.
    Type: Application
    Filed: March 12, 2018
    Publication date: September 12, 2019
    Inventors: Oleg GLUSCHENKOV, Zuoguang LIU, Shogo MOCHIZUKI, Hiroaki NIIMI, Tenko YAMASHITA
  • Patent number: 10411120
    Abstract: A method for manufacturing a semiconductor device includes forming a stacked configuration of first and second semiconductor layers on a semiconductor substrate, wherein the stacked configuration comprises a repeating arrangement of a second semiconductor layer stacked on a first semiconductor layer, forming a plurality of dummy gates spaced apart from each other on the stacked configuration, wherein the plurality of dummy gates cover a portion of the stacked configuration in a channel region, performing an implantation of a semiconductor material on exposed portions of the stacked configuration in a source/drain region, wherein the implantation increases a concentration of the semiconductor material in the exposed portions of the stacked configuration, and selectively removing first semiconductor layers having an increased concentration of the semiconductor material from the source/drain region, wherein the removed first semiconductor layers correspond in position to the first semiconductor layers in the cha
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: September 10, 2019
    Assignee: International Business Machines Corporation
    Inventors: Robin Hsin-Kuo Chao, Michael A. Guillorn, Chi-Chun Liu, Shogo Mochizuki, Chun W. Yeung
  • Patent number: 10388766
    Abstract: A VFET device with a dual top spacer to prevent source/drain-to-gate short, and techniques for formation thereof are provided. In one aspect, a method of forming a VFET device includes: etching vertical fin channels in a substrate; forming a bottom source and drain in the substrate beneath the vertical fin channels; forming a bottom spacer on the bottom source and drain; depositing a gate dielectric and gate conductor onto the vertical fin channels; recessing the gate dielectric and gate conductor to expose tops of the vertical fin channels; selectively forming dielectric spacers on end portions of the gate dielectric and gate conductor adjacent to the tops of the vertical fin channels; depositing an encapsulation layer onto the vertical fin channels; recessing the encapsulation layer with the dielectric spacers serving as an etch stop; and forming top source and drains. A VFET device formed using the present techniques is also provided.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: August 20, 2019
    Assignee: International Business Machines Corporation
    Inventors: Shogo Mochizuki, Michael P. Belyansky, Choonghyun Lee
  • Publication number: 20190252260
    Abstract: A method of forming a semiconductor device that includes forming a vertically orientated channel in a semiconductor fin structure that is present on a supporting substrate; and depositing a doped amorphous semiconductor material on an upper surface of the semiconductor fin structure that is opposite a base surface of the semiconductor fin structure that is in contact with the supporting substrate. The method further includes recrystallizing the doped amorphous semiconductor material with an anneal duration for substantially a millisecond duration or less to provide a doped polycrystalline source and/or drain region at the upper surface of the semiconductor fin structure.
    Type: Application
    Filed: February 12, 2018
    Publication date: August 15, 2019
    Inventors: Alexander Reznicek, Shogo Mochizuki, Oleg Gluschenkov
  • Patent number: 10381442
    Abstract: Techniques for forming Ga-doped source drain contacts in Ge-based transistors are provided. In one aspect, a method for forming Ga-doped source and drain contacts includes the steps of: depositing a dielectric over a transistor; depositing a dielectric over the transistor; forming contact trenches in the dielectric over, and extending down to, source and drain regions of the transistor; depositing an epitaxial material into the contact trenches; implanting gallium ions into the epitaxial material to form an amorphous gallium-doped layer; and annealing the amorphous gallium-doped layer under conditions sufficient to form a crystalline gallium-doped layer having a homogenous gallium concentration of greater than about 5×1020 at./cm3. Transistor devices are also provided utilizing the present Ga-doped source and drain contacts.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: August 13, 2019
    Assignee: International Business Machines Corporation
    Inventors: Oleg Gluschenkov, Zuoguang Liu, Shogo Mochizuki, Hiroaki Niimi, Chun-chen Yeh
  • Patent number: 10381479
    Abstract: Techniques for interface charge reduction to improve performance of SiGe channel devices are provided. In one aspect, a method for reducing interface charge density (Dit) for a SiGe channel material includes: contacting the SiGe channel material with an Si-containing chemical precursor under conditions sufficient to form a thin continuous Si layer, e.g., less than 5 monolayers thick on a surface of the SiGe channel material which is optionally contacted with an n-dopant precursor; and depositing a gate dielectric on the SiGe channel material over the thin continuous Si layer, wherein the thin continuous Si layer by itself or in conjunction with n-dopant precursor passivates an interface between the SiGe channel material and the gate dielectric thereby reducing the Dit. A FET device and method for formation thereof are also provided.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: August 13, 2019
    Assignee: International Business Machines Corporation
    Inventors: Devendra Sadana, Dechao Guo, Joel P. de Souza, Ruqiang Bao, Stephen W. Bedell, Shogo Mochizuki, Gen Tsutsui, Hemanth Jagannathan, Marinus Hopstaken
  • Publication number: 20190245083
    Abstract: A self-limiting etch is used to provide a semiconductor base located between a semiconductor substrate and a semiconductor fin. The semiconductor base has an upper portion, a lower portion and a midsection. The midsection has a narrower width than the lower and upper portions. A bottom source/drain structure is grown from surfaces of the semiconductor substrate and the semiconductor base. The bottom source/drain structure has a tip region that contacts the midsection of the semiconductor base. The bottom source/drain structures on each side of the semiconductor fin are in close proximity to each other and they have increased volume. Reduced access resistance may also be achieved since the bottom source/drain structure has increased volume.
    Type: Application
    Filed: February 5, 2018
    Publication date: August 8, 2019
    Inventors: Alexander Reznicek, Shogo Mochizuki, Jingyun Zhang, Xin Miao