Patents by Inventor Shuangqiang Luo

Shuangqiang Luo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11257834
    Abstract: A microelectronic device comprising a stack structure comprising a non-staircase region, a staircase region, and an array region. Each of the non-staircase region, the staircase region, and the array region comprises tiers of alternating conductive materials and dielectric materials. One or more pillars are in the non-staircase region and in the array region, and one or more supports are in the staircase region. A conductive material is in each of the non-staircase region, the staircase region, and the array region and extends vertically into a source adjacent to the tiers. The source comprises corrosion containment features in each of the non-staircase region, the staircase region, and the array region, adjacent to the conductive material in the source. Additional microelectronic devices, electronic systems, and methods are also disclosed.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: February 22, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Shuangqiang Luo, Indra V. Chary
  • Publication number: 20220044995
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating first tiers and second tiers having channel-material strings therein. Conductive vias are formed through insulating material that is directly above the channel-material strings. Individual of the conductive vias are directly electrically coupled to individual of the channel-material strings. After forming the conductive vias, horizontally-elongated trenches are formed into the stack to form laterally-spaced memory-block regions. Intervening material is formed in the trenches laterally-between and longitudinally-along the immediately-laterally-adjacent memory-block regions. Additional methods and structures independent of method are disclosed.
    Type: Application
    Filed: October 21, 2021
    Publication date: February 10, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Harsh Narendrakumar Jain, Shuangqiang Luo
  • Publication number: 20220044999
    Abstract: Some embodiments include conductive interconnects which include the first and second conductive materials, and which extend upwardly from a conductive structure. Some embodiments include integrated assemblies having conductive interconnects.
    Type: Application
    Filed: August 7, 2020
    Publication date: February 10, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, Rita J. Klein, Everett A. McTeer, John D. Hopkins, Shuangqiang Luo, Song Kai Tan, Jing Wai Fong, Anurag Jindal, Chieh Hsien Quek
  • Patent number: 11239248
    Abstract: A method of forming a microelectronic device comprises forming isolated nitride structures on steps of stair step structures comprising stacked tiers comprising alternating levels of a first insulative material and a second insulative material, forming a photoresist material over some of the stair step structures, and replacing the isolated nitride structures and the second insulative material with an electrically conductive material to respectively form conductive pad structures and electrically conductive lines. Related microelectronic devices and electronic devices are also disclosed.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: February 1, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Lifang Xu, John D. Hopkins, Roger W. Lindsay, Shuangqiang Luo
  • Patent number: 11217601
    Abstract: A microelectronic device comprises a stack structure, at least one staircase structure, contact structures, and support structures. The stack structure comprises vertically alternating conductive structures and insulating structures arranged in tiers, each of the tiers individually comprising one of the conductive structures and one of the insulating structures. The at least one staircase structure is within the stack structure and has steps comprising edges of at least some of the tiers. The contact structures are on the steps of the at least one staircase structure. The support structures horizontally alternate with the contact structures in a first horizontal direction and vertically extend through the stack structure. The support structures have oblong horizontal cross-sectional shapes. Additional microelectronic devices, memory devices, and electronic systems are also described.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: January 4, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Shuangqiang Luo, Xuan Li, Adeline Yii
  • Publication number: 20210398997
    Abstract: A microelectronic device comprises a stack structure comprising alternating conductive structures and insulative structures arranged in tiers, the tiers individually comprising one of the conductive structures and one of the insulative structures, first support pillar structures extending through the stack structure within a first region of the microelectronic device, the first support pillar structures electrically isolated from a source structure underlying the stack structure, second support pillar structures extending through the stack structure within a second region of the microelectronic device, the second support pillar structures comprising an electrically conductive material in electrical communication with the source structure, and bridge structures extending between at least some neighboring first support pillar structures of the first support pillar structures. Related memory devices, electronic systems, and methods are also described.
    Type: Application
    Filed: June 22, 2020
    Publication date: December 23, 2021
    Inventors: Shuangqiang Luo, Indra V. Chary, Justin B. Dorhout
  • Publication number: 20210375907
    Abstract: Some embodiments include an integrated assembly having a first deck, a second deck over the first deck, and a third deck over the second deck. The first deck has first conductive levels disposed one atop another. The second deck has second conductive levels disposed one atop another. The third deck has third conductive levels disposed one atop another. A first staircase region extends to the first and second conductive levels, and passes through the third conductive levels. A second staircase region extends to the third conductive levels and not to the first and second conductive levels. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: May 28, 2020
    Publication date: December 2, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Shuangqiang Luo, Indra V. Chary
  • Publication number: 20210375894
    Abstract: Some embodiments include an integrated assembly having a conductive expanse over conductive nodes. The conductive nodes include a first composition. A bottom surface of the conductive expanse includes a second composition which is different composition than the first composition. A stack is over the conductive expanse. The stack includes alternating first and second levels. Pillar structures extend vertically through the stack. Each of the pillar structures includes a post of conductive material laterally surrounded by an insulative liner. At least one of the posts extends through the conductive expanse to directly contact one of the conductive nodes. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: August 6, 2021
    Publication date: December 2, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Shuangqiang Luo, Indra V. Chary, Justin B. Dorhout, Rita J. Klein
  • Patent number: 11183456
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating first tiers and second tiers having channel-material strings therein. Conductive vias are formed through insulating material that is directly above the channel-material strings. Individual of the conductive vias are directly electrically coupled to individual of the channel-material strings. After forming the conductive vias, horizontally-elongated trenches are formed into the stack to form laterally-spaced memory-block regions. Intervening material is formed in the trenches laterally-between and longitudinally-along the immediately-laterally-adjacent memory-block regions. Additional methods and structures independent of method are disclosed.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: November 23, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Harsh Narendrakumar Jain, Shuangqiang Luo
  • Publication number: 20210296342
    Abstract: A microelectronic device comprises a stack structure, a stadium structure within the stack structure, a source tier underlying the stack structure, and a masking structure. The stack structure has tiers each comprising a conductive structure and an insulating structure. The stadium structure comprises a forward staircase structure, a reverse staircase structure, and a central region horizontally interposed between the forward staircase structure and the reverse staircase structure. The source tier comprises discrete conductive structures within horizontal boundaries of the central region of the stadium structure and horizontally separated from one another by dielectric material. The masking structure is confined within the horizontal boundaries of the central region of the stadium structure and is vertically interposed between the source tier and the stack structure.
    Type: Application
    Filed: March 17, 2020
    Publication date: September 23, 2021
    Inventors: Shuangqiang Luo, Nancy M. Lomeli
  • Patent number: 11121143
    Abstract: Some embodiments include an integrated assembly having a conductive expanse over conductive nodes. The conductive nodes include a first composition. A bottom surface of the conductive expanse includes a second composition which is different composition than the first composition. A stack is over the conductive expanse. The stack includes alternating first and second levels. Pillar structures extend vertically through the stack. Each of the pillar structures includes a post of conductive material laterally surrounded by an insulative liner. At least one of the posts extends through the conductive expanse to directly contact one of the conductive nodes. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: September 14, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Shuangqiang Luo, Indra V. Chary, Justin B. Dorhout, Rita J. Klein
  • Publication number: 20210280597
    Abstract: Some embodiments include an integrated assembly having a memory array region which includes channel material pillars extending through a stack of alternating conductive and insulative levels. A second region is adjacent the memory array region. A conductive expanse is within the memory array region and electrically coupled with the channel material of the channel material pillars. A panel extends across the memory array region and the second region. The panel separates one memory block region from another. The panel has a first portion over the conductive expanse, and has a second portion adjacent the first portion. The panel has a bottom surface. A first segment of the bottom surface is adjacent an upper surface of the conductive expanse. A segment of the bottom surface within the second portion is elevationally offset relative to the first segment. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: March 6, 2020
    Publication date: September 9, 2021
    Applicant: Micron Technology, Inc.
    Inventor: Shuangqiang Luo
  • Publication number: 20210265371
    Abstract: A microelectronic device comprises a stack structure comprising vertically alternating conductive structures and insulating structures arranged in tiers, the tiers individually comprising one of the conductive structures and one of the insulating structures, a staircase structure within the stack structure and having steps comprising edges of at least some of the tiers, conductive contact structures on the steps of the staircase structure, support pillar structures laterally offset in at least a first direction from the conductive contact structures and extending through the stack structure, and bridge structures comprising an electrically insulating material extending vertically through at least a portion of the stack structure and between at least some adjacent support pillar structures of the support pillar structures. Related memory devices, electronic systems, and methods are also described.
    Type: Application
    Filed: February 24, 2020
    Publication date: August 26, 2021
    Inventors: Shuangqiang Luo, Nancy M. Lomeli, Lifang Xu
  • Publication number: 20210217762
    Abstract: A microelectronic device comprising a stack structure comprising a non-staircase region, a staircase region, and an array region. Each of the non-staircase region, the staircase region, and the array region comprises tiers of alternating conductive materials and dielectric materials. One or more pillars are in the non-staircase region and in the array region, and one or more supports are in the staircase region. A conductive material is in each of the non-staircase region, the staircase region, and the array region and extends vertically into a source adjacent to the tiers. The source comprises corrosion containment features in each of the non-staircase region, the staircase region, and the array region, adjacent to the conductive material in the source. Additional microelectronic devices, electronic systems, and methods are also disclosed.
    Type: Application
    Filed: January 15, 2020
    Publication date: July 15, 2021
    Inventors: Shuangqiang Luo, Indra V. Chary
  • Publication number: 20210217694
    Abstract: A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating first tiers and second tiers having channel-material strings therein. Conductive vias are formed through insulating material that is directly above the channel-material strings. Individual of the conductive vias are directly electrically coupled to individual of the channel-material strings. After forming the conductive vias, horizontally-elongated trenches are formed into the stack to form laterally-spaced memory-block regions. Intervening material is formed in the trenches laterally-between and longitudinally-along the immediately-laterally-adjacent memory-block regions. Additional methods and structures independent of method are disclosed.
    Type: Application
    Filed: January 15, 2020
    Publication date: July 15, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Harsh Narendrakumar Jain, Shuangqiang Luo
  • Publication number: 20210151455
    Abstract: A method of forming a microelectronic device comprises forming isolated nitride structures on steps of stair step structures comprising stacked tiers comprising alternating levels of a first insulative material and a second insulative material, forming a photoresist material over some of the stair step structures, and replacing the isolated nitride structures and the second insulative material with an electrically conductive material to respectively form conductive pad structures and electrically conductive lines. Related microelectronic devices and electronic devices are also disclosed.
    Type: Application
    Filed: November 18, 2019
    Publication date: May 20, 2021
    Inventors: Lifang Xu, John D. Hopkins, Roger W. Lindsay, Shuangqiang Luo
  • Publication number: 20210126010
    Abstract: A method of forming a microelectronic device comprises forming a microelectronic device structure. The microelectronic device structure comprises a stack structure comprising insulative structures and additional insulative structures vertically alternating with the insulative structures, a dielectric structure vertically extending partially through the stack structure, and a dielectric material vertically overlying and horizontally extending across the stack structure and the dielectric structure. Portions of at least the dielectric material and the dielectric structure are removed to form a trench vertically overlying and at least partially horizontally overlapping a remaining portion of the dielectric structure. The trench is substantially filled with additional dielectric material. Microelectronic devices, memory devices, and electronic systems are also described.
    Type: Application
    Filed: October 29, 2019
    Publication date: April 29, 2021
    Inventors: Shuangqiang Luo, Indra V. Chary, Justin B. Dorhout
  • Publication number: 20210126009
    Abstract: A microelectronic device comprises a stack structure, at least one staircase structure, contact structures, and support structures. The stack structure comprises vertically alternating conductive structures and insulating structures arranged in tiers, each of the tiers individually comprising one of the conductive structures and one of the insulating structures. The at least one staircase structure is within the stack structure and has steps comprising edges of at least some of the tiers. The contact structures are on the steps of the at least one staircase structure. The support structures horizontally alternate with the contact structures in a first horizontal direction and vertically extend through the stack structure. The support structures have oblong horizontal cross-sectional shapes. Additional microelectronic devices, memory devices, and electronic systems are also described.
    Type: Application
    Filed: October 29, 2019
    Publication date: April 29, 2021
    Inventors: Shuangqiang Luo, Xuan Li, Adeline Yii
  • Patent number: 10879267
    Abstract: A microelectronic device comprises vertically alternating conductive structures and insulating structures arranged in tiers, each of the tiers individually comprising one of the conductive structures and one of the insulating structures; a staircase structure within the stack structure and having steps comprising edges of at least some of the tiers; a source tier underlying the stack structure and comprising: a source structure, and first discrete conductive structures horizontally separated from one another and the source structure by at least one dielectric material; conductive contact structures on the steps of the staircase structure; and first conductive pillar structures horizontally alternating with the conductive contact structures and vertically extending through the stack structure to the first discrete conductive structures of the source tier. A memory device, a 3D NAND Flash memory device, and an electronic system are also described.
    Type: Grant
    Filed: February 25, 2020
    Date of Patent: December 29, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Shuangqiang Luo, Indra V. Chary, Justin B. Dorhout
  • Publication number: 20200373316
    Abstract: Some embodiments include an integrated assembly having a conductive expanse over conductive nodes. The conductive nodes include a first composition. A bottom surface of the conductive expanse includes a second composition which is different composition than the first composition. A stack is over the conductive expanse. The stack includes alternating first and second levels. Pillar structures extend vertically through the stack. Each of the pillar structures includes a post of conductive material laterally surrounded by an insulative liner. At least one of the posts extends through the conductive expanse to directly contact one of the conductive nodes. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: May 24, 2019
    Publication date: November 26, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Shuangqiang Luo, Indra V. Chary, Justin B. Dorhout, Rita J. Klein