Patents by Inventor Shuji Nakamura

Shuji Nakamura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160194781
    Abstract: A method and apparatus for growing a Group-III nitride crystal using multiple interconnected reactor vessels to modify growth conditions during the ammonothermal growth of the Group-III nitride crystal, such that, by combining two or more vessels, it is possible to modify the conditions under which the Group-III nitride crystals are grown. In addition, the reactor vessel may use carbon fiber containing materials encapsulating oxide ceramic materials as structural elements to contain the materials for growing the Group-III nitride crystals at pressures or temperatures necessary for growth of the Group-III nitride crystals.
    Type: Application
    Filed: August 29, 2014
    Publication date: July 7, 2016
    Applicant: The Regents of the University of California
    Inventors: Siddha Pimputkar, Shuji Nakamura, James S. Speck
  • Publication number: 20160196077
    Abstract: Storage system: wherein processor number information includes at least one logical unit number and at least one processor number of storage nodes; wherein transfer list index/processor number information includes a processor number for identifying a processor from among processors of the plurality of storage nodes, and index information for identifying a transfer list including instruction which the processor sends to the protocol processor; wherein a local router determines a first processor from among the processors of the plurality of storage nodes which is to be a transfer destination of a write request based on processor number information in response to the write request from the host computer through the protocol processor; wherein the first processor generates and sends to the protocol processor a first transfer list which includes instruction for processing, and generates first index information which is an index of the first transfer list upon receiving the write request.
    Type: Application
    Filed: September 22, 2014
    Publication date: July 7, 2016
    Inventors: Shuji NAKAMURA, Akira FUJIBAYASHI, Mutsumi HOSOYA
  • Publication number: 20160178116
    Abstract: A threaded portion with thread groove formed and non-threaded portion without the thread groove are prepared on rod-like portion of stud, and non-threaded diameter-increasing portion whose outer diameter is increasing toward thread ridge of screw portion with thread groove formed and non-threaded small diameter portion connecting to small diameter region of non-threaded diameter-increasing portion and having same diameter as that of small diameter region are prepared at threaded portion side edge of non-threaded portion. A holder is provided with stud-receiving hole which receives the rod-like portion, a first locking portion and a second locking portion. The second locking portion is engaged with the non-threaded small diameter portion in a fixedly holding status, and the second locking portion is engaged with the non-threaded diameter-increasing portion in a status that the holder is moved for a predetermined amount in a direction away from the fixedly holding status.
    Type: Application
    Filed: December 15, 2015
    Publication date: June 23, 2016
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, NEWFREY LLC.
    Inventors: Shuji NAKAMURA, Hiroto MATSUNO
  • Publication number: 20160179380
    Abstract: A system includes a plurality of flash memory devices, a processor configured to control read/write requests, and a cache memory configured to store data temporarily.
    Type: Application
    Filed: January 7, 2016
    Publication date: June 23, 2016
    Inventors: Shuji NAKAMURA, Kazuhisa FUJIMOTO, Akira FUJIBAYASHI
  • Publication number: 20160156155
    Abstract: A III-Nitride based Vertical Cavity Surface Emitting Laser (VCSEL), wherein a cavity length of the VCSEL is controlled by etching.
    Type: Application
    Filed: August 6, 2015
    Publication date: June 2, 2016
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Casey O. Holder, Daniel F. Feezell, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Patent number: 9356431
    Abstract: A high power blue-violet Ill-nitride semipolar laser diode (LD) with an output power in excess of 1 W, a slope efficiency of more than 1 W/A, and an external quantum efficiency (EQE) in excess of 25% and more preferably, in excess of 35%. These operating characteristics make these laser diodes suitable for use in solid state lighting systems.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: May 31, 2016
    Assignee: The Regents of the University of California
    Inventors: Arash Pourhashemi, Robert M. Farrell, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Patent number: 9340899
    Abstract: A nonpolar III-nitride film grown on a miscut angle of a substrate, in order to suppress the surface undulations, is provided. The surface morphology of the film is improved with a miscut angle towards an a-axis direction comprising a 0.15° or greater miscut angle towards the a-axis direction and a less than 30° miscut angle towards the a-axis direction.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: May 17, 2016
    Assignee: The Regents of the University of California
    Inventors: Asako Hirai, Zhongyuan Jia, Makoto Saito, Hisashi Yamada, Kenji Iso, Steven P. DenBaars, Shuji Nakamura, James S. Speck
  • Publication number: 20160133790
    Abstract: This invention is related to LED Light Extraction for optoelectronic applications. More particularly the invention relates to (Al, Ga, In)N combined with optimized optics and phosphor layer for highly efficient (Al, Ga, In)N based light emitting diodes applications, and its fabrication method. A further extension is the general combination of a shaped high refractive index light extraction material combined with a shaped optical element.
    Type: Application
    Filed: December 23, 2015
    Publication date: May 12, 2016
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Natalie Fellows DeMille, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 9298271
    Abstract: A mounting device includes a base member, an attaching mechanism disposed on the base member and configured to detachably attach the base member to a first electronic apparatus, and an accommodating part disposed on the base member and configured to hold a second electronic apparatus placed therein.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: March 29, 2016
    Assignee: FUJITSU COMPONENT LIMITED
    Inventors: Katsuya Funakoshi, Shuji Nakamura, Akio Nakamura
  • Publication number: 20160085463
    Abstract: Storage system: wherein processor number information includes at least one logical unit number and at least one processor number of storage nodes; wherein transfer list index/processor number information includes a processor number for identifying a processor from among processors of the plurality of storage nodes, and index information for identifying a transfer list including instruction which the processor sends to the protocol processor; wherein a local router determines a first processor from among the processors of the plurality of storage nodes which is to be a transfer destination of a write request based on processor number information in response to the write request from the host computer through the protocol processor; wherein the first processor generates and sends to the protocol processor a first transfer list which includes instruction for processing, and generates first index information which is an index of the first transfer list upon receiving the write request.
    Type: Application
    Filed: September 22, 2014
    Publication date: March 24, 2016
    Inventors: Shuji NAKAMURA, Akira FUJIBAYASHI, Mutsumi HOSOYA
  • Publication number: 20160079738
    Abstract: A method for growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices, comprising identifying desired material properties for a particular device application, selecting a semipolar growth orientation based on the desired material properties, selecting a suitable substrate for growth of the selected semipolar growth orientation, growing a planar semipolar (Ga,Al,In,B)N template or nucleation layer on the substrate, and growing the semipolar (Ga,Al,In,B)N thin films, heterostructures or devices on the planar semipolar (Ga,Al,In,B)N template or nucleation layer. The method results in a large area of the semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices being parallel to the substrate surface.
    Type: Application
    Filed: November 30, 2015
    Publication date: March 17, 2016
    Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, Japan Science and Technology Agency
    Inventors: Robert M. Farrell, Troy J. Baker, Arpan Chakraborty, Benjamin A. Haskell, P. Morgan Pattison, Rajat Sharma, Umesh K. Mishra, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Publication number: 20160079499
    Abstract: A method for increasing the luminous efficacy of a white light emitting diode (WLED), comprising introducing optically functional interfaces between an LED die and a phosphor, and between the phosphor and an outer medium, wherein at least one of the interfaces between the phosphor and the LED die provides a reflectance for light emitted by the phosphor away from the outer medium and a transmittance for light emitted by the LED die. Thus, a WLED may comprise a first material which surrounds an LED die, a phosphor layer, and at least one additional layer or material which is transparent for direct LED emission and reflective for the phosphor emission, placed between the phosphor layer and the first material which surrounds the LED die.
    Type: Application
    Filed: November 20, 2015
    Publication date: March 17, 2016
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Frederic S. Diana, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 9251063
    Abstract: A storage system including a storage device which includes media for storing data from a host computer, a medium controller for controlling the media, a plurality of channel controllers for connecting to the host computer through a channel and a cache memory for temporarily storing data from the host computer, wherein the media have a restriction on a number of writing times. The storage device includes a bus for directly transferring data from the medium controller to the channel controller.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: February 2, 2016
    Assignee: Hitachi, Ltd.
    Inventors: Shuji Nakamura, Kazuhisa Fujimoto, Akira Fujibayashi
  • Patent number: 9250044
    Abstract: Laser dazzler devices and methods of using laser dazzler devices are disclosed. More specifically, embodiments of the present invention provide laser dazzling devices power by one or more green laser diodes characterized by a wavelength of about 500 nm to 540 nm. In various embodiments, laser dazzling devices according to the present invention include non-polar and/or semi-polar green laser diodes. In a specific embodiment, a laser dazzling device includes a plurality of green laser diodes.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: February 2, 2016
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, Paul Rudy, Vinod Khosla, Pierre Lamond, Steven P. Denbaars, Shuji Nakamura, Richard T. Ogawa
  • Patent number: 9243344
    Abstract: A gallium nitride crystal with a polyhedron shape having exposed {10-10} m-planes and an exposed (000-1) N-polar c-plane, wherein a surface area of the exposed (000-1) N-polar c-plane is more than 10 mm2 and a total surface area of the exposed {10-10} m-planes is larger than half of the surface area of (000-1) N-polar c-plane. The GaN bulk crystals were grown by an ammonothermal method with a higher temperature and temperature difference than is used conventionally, using a high-pressure vessel with an upper region and a lower region. The temperature of the lower region is at or above 550° C., the temperature of the upper region is set at or above 500° C., and the temperature difference between the lower and upper regions is maintained at or above 30° C. GaN seed crystals having a longest dimension along the c-axis and exposed large area m-planes are used.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: January 26, 2016
    Assignee: The Regents of the University of California
    Inventors: Tadao Hashimoto, Shuji Nakamura
  • Patent number: 9240529
    Abstract: This invention is related to LED Light Extraction for optoelectronic applications. More particularly the invention relates to (Al, Ga, In)N combined with optimized optics and phosphor layer for highly efficient (Al, Ga, In)N based light emitting diodes applications, and its fabrication method. A further extension is the general combination of a shaped high refractive index light extraction material combined with a shaped optical element.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: January 19, 2016
    Assignee: The Regents of the University of California
    Inventors: Natalie Fellows DeMille, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 9231376
    Abstract: A method for growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices, comprising identifying desired material properties for a particular device application, selecting a semipolar growth orientation based on the desired material properties, selecting a suitable substrate for growth of the selected semipolar growth orientation, growing a planar semipolar (Ga,Al,In,B)N template or nucleation layer on the substrate, and growing the semipolar (Ga,Al,In,B)N thin films, heterostructures or devices on the planar semipolar (Ga,Al,In,B)N template or nucleation layer. The method results in a large area of the semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices being parallel to the substrate surface.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: January 5, 2016
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: Robert M. Farrell, Jr., Troy J. Baker, Arpan Chakraborty, Benjamin A. Haskell, P. Morgan Pattison, Rajat Sharma, Umesh K. Mishra, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Publication number: 20150371849
    Abstract: A method for the reuse of gallium nitride (GaN) epitaxial substrates uses band-gap-selective photoelectrochemical (PEC) etching to remove one or more epitaxial layers from bulk or free-standing GaN substrates without damaging the substrate, allowing the substrate to be reused for further growth of additional epitaxial layers. The method facilitates a significant cost reduction in device production by permitting the reuse of expensive bulk or free-standing GaN substrates.
    Type: Application
    Filed: August 28, 2015
    Publication date: December 24, 2015
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Casey O. Holder, Daniel F. Feezell, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20150372456
    Abstract: A high power blue-violet Ill-nitride semi-polar laser diode (LD) with an output power in excess of 1 W, a slope efficiency of more than 1 W/A, and an external quantum efficiency (EQE) in excess of 25% and more preferably, in excess of 35%. These operating characteristics make these laser diodes suitable for use in solid state lighting systems.
    Type: Application
    Filed: February 13, 2014
    Publication date: December 24, 2015
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Arash Pourhashemi, Robert M. Farrell, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Patent number: 9219205
    Abstract: A method for increasing the luminous efficacy of a white light emitting diode (WLED), comprising introducing optically functional interfaces between an LED die and a phosphor, and between the phosphor and an outer medium, wherein at least one of the interfaces between the phosphor and the LED die provides a reflectance for light emitted by the phosphor away from the outer medium and a transmittance for light emitted by the LED die. Thus, a WLED may comprise a first material which surrounds an LED die, a phosphor layer, and at least one additional layer or material which is transparent for direct LED emission and reflective for the phosphor emission, placed between the phosphor layer and the first material which surrounds the LED die.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: December 22, 2015
    Assignee: The Regents of the University of California
    Inventors: Frederic S. Diana, Steven P. DenBaars, Shuji Nakamura