Patents by Inventor Soo Hwan Son

Soo Hwan Son has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8597534
    Abstract: There are provided a composition for a ceramic electronic component having excellent sinterability and magnetic characteristics (Q), a manufacturing method thereof, and an electronic component using the same. The magnetic material composition for the ceramic electronic component is composed of ferric oxide (Fe2O3) of 47.0 to 49.0 parts by mole, nickel oxide (NiO) of 16.0 to 24.0 parts by mole, zinc oxide (ZnO) of 18.0 to 25.0 parts by mole, and copper oxide (CuO) of 7.0 to 13.0 parts by mole, wherein a portion of ferric oxide may be substituted with boron oxide (B2O3). The ceramic electronic component manufactured by using the magnetic material composition for the ceramic electronic component has an excellent Q.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: December 3, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Sung Yong An, Ic Seob Kim, Sung Lyoung Kim, Soo Hwan Son, Jin Woo Hahn
  • Patent number: 8576040
    Abstract: Disclosed herein is a multilayer type power inductor including: a plurality of body layers including internal electrodes and having magnetic material layers stacked therein; and a plurality of gap layers, wherein the gap layer has an asymmetrical structure. In the multilayer type power inductor, portions that are in contact with the body layers have, a non-porous structure, which is a dense structure, and portions that are not in contact with the body layers have a porous structure, such that the gap layer has the asymmetrical structure. Therefore, a magnetic flux propagation path in a coil is dispersed to suppress magnetization at a high current, thereby making it possible to improve a change in inductance (L) value according to the application of current.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: November 5, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Myeong Gi Kim, So Yeon Song, Ic Seob Kim, Sung Yong An, Jin Woo Hahn, Soo Hwan Son
  • Publication number: 20130120905
    Abstract: There are provided a multilayered ceramic electronic component and a method of fabricating the same. The multilayered ceramic electronic component includes: a ceramic main body; external electrodes; and inner conductors forming a structure of a coil within the ceramic main body, wherein a central axis of the coil is in parallel to the direction in which the external electrodes are connected, and the inner conductors include via conductors laminated to be perpendicular to the central axis of the coil and a ratio of the area of one face of the via conductor to the area of the other face of the via conductor ranges from 0.9 to 1.1.
    Type: Application
    Filed: January 17, 2012
    Publication date: May 16, 2013
    Inventors: Soo Hwan Son, Byeong Cheol Moon, So Yeon Song
  • Publication number: 20130027168
    Abstract: Disclosed herein are a multilayer power inductor and a method of manufacturing the same. The multilayer power inductor includes a multilayer body formed by multi-layering a plurality of body sheets; a coil portion including internal electrode patterns that are respectively formed on the plurality of body sheets; and external electrodes that are disposed on lateral surfaces of the multilayer body and are electrically connected to both ends of the coil portion, wherein a space portion is formed in the internal electrode pattern to correspond to contraction of the plurality of body sheet. The multilayer power inductor relieves internal stress generated in a product through the space portion so as to prevent the body sheet from being magnetized due to the internal stress, thereby preventing a reduction in inductance. The multilayer inductor may also be manufactured by using conventional manufacturing processes themselves without any influence on the productivity of a product.
    Type: Application
    Filed: June 4, 2012
    Publication date: January 31, 2013
    Inventors: Myeong Gi KIM, Sung Yong AN, Soo Hwan SON
  • Publication number: 20130009742
    Abstract: Disclosed herein are a multilayer type inductor including a magnetic layer composition including NiZn ferrite, a multilayer type coil component including a magnetic layer prepared therefrom, and a method for manufacturing the same. According to the present invention, a copper electrode can be used as an internal electrode of a multilayer type coil product, by including NiZn ferrite in the magnetic layer. As copper is used for the internal electrode, material costs can be significantly reduced. Furthermore, the present invention can improve the maximum saturation magnetization value against the NiCuZn ferrite by about 10%, due to exclusion of Cu having weak magnetism, and can be more desirably used in a product employing high current.
    Type: Application
    Filed: May 30, 2012
    Publication date: January 10, 2013
    Inventors: Byeong Cheol Moon, So Yeon Song, Soo Hwan Son
  • Publication number: 20130002389
    Abstract: Disclosed are a multilayered power inductor, including: a body in which a plurality of magnetic layers formed with inner electrodes are stacked; and a plurality of gap layers, wherein the plurality of gap layers are formed so as not to contact external electrodes formed at both sides of the body, and a gap composition of the multilayered power inductor. In addition, as the gap composition, the exemplary embodiment of present invention can prepare tetravalent or tetravalent dielectric oxide into the paste type and applies the gap layer structure thereto, thereby facilitating the structural design and the thickness control of the gap layer as compared with the case of forming the gap layer in the sheet shape of the related art and improving the DC-bias characteristics by maximally suppressing the diffusion with the body.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 3, 2013
    Inventors: Soo Hwan SON, Sung Yong An, Myeong Gi Kim, So Yeon Song, Byeong Cheol Moon
  • Publication number: 20130002391
    Abstract: Disclosed herein are a multilayered power inductor including a magnetic layer having a structure in which a metal magnetic powder is distributed on a glass substrate, a composition for the magnetic layer, and a method for preparing a multilayered power inductor. According to an exemplary embodiment of the present invention, the multilayered power inductor including a magnetic layer obtained by mixing the metal magnetic powder having high Ms with the glass substrate has excellent bias characteristics having small variations in capacity even when high current is applied. In addition, the exemplary embodiment of the present invention can use Cu as an inner electrode, instead of an expensive precious metal Ag.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 3, 2013
    Inventors: Ic Seob KIM, Soo Hwan SON, Sung Yong AN, Jin Woo HAHN, Byeong Cheol MOON
  • Publication number: 20120268230
    Abstract: Disclosed herein is a multilayer type power inductor including: a plurality of body layers including internal electrodes and having magnetic material layers stacked therein; and a plurality of gap layers, wherein the gap layer has an asymmetrical structure. In the multilayer type power inductor, portions that are in contact with the body layers have, a non-porous structure, which is a dense structure, and portions that are not in contact with the body layers have a porous structure, such that the gap layer has the asymmetrical structure. Therefore, a magnetic flux propagation path in a coil is dispersed to suppress magnetization at a high current, thereby making it possible to improve a change in inductance (L) value according to the application of current.
    Type: Application
    Filed: September 20, 2011
    Publication date: October 25, 2012
    Inventors: Myeong Gi KIM, So Yeon Song, Ic Seob Kim, Sung Yong An, Jin Woo Hahn, Soo Hwan Son
  • Publication number: 20120169444
    Abstract: There is provided is a laminated inductor, including: a ceramic main body in which a plurality of ceramic layers are stacked; a plurality of inner electrodes formed on the plurality of ceramic layers and having a contact area with the ceramic layer that is 10% or less than that of the entire area of the ceramic layer; and via electrodes having a coil structure by connecting the plurality of inner electrodes.
    Type: Application
    Filed: November 28, 2011
    Publication date: July 5, 2012
    Inventors: Soo Hwan Son, Sung Yong An, Sung Lyoung Kim, Jin Woo Hahn, Ic Seob Kim
  • Publication number: 20120138215
    Abstract: There are provided a nano glass powder for a sintering additive and a method for fabricating the same. The method for fabricating the nano glass powder for the sintering additive includes fabricating a mixed solution by dissolving a raw material of boron (B), a raw material of silicon (Si), and a raw material of a metal oxide in a non-aqueous solvent; controlling a sol-gel reaction by adding an alkali catalyst to the mixed solution, drying a sol-gel material obtained by the sol-gel reaction, and heat treating the sol-gel material.
    Type: Application
    Filed: June 16, 2011
    Publication date: June 7, 2012
    Inventors: Ic Seob KIM, Sung Ryong KIM, Soo Hwan SON, Jin Woo HAN, Sung Yong AN
  • Publication number: 20120132847
    Abstract: A magnetic material composition for ceramic electronic components that is excellent in sintering properties and magnetic properties (in particular, a Q-factor) and a manufacturing method thereof, and a ceramic electronic component using the magnetic material composition are provided. The magnetic material composition includes Ni—Zn—Cu ferrite powder formed of 47.0 to 49.5 parts by mole of a mixture of iron oxide (Fe2O3), cobalt oxide (CoO), and titanium oxide (TiO2), 16.0 to 24.0 parts by mole of nickel oxide (NiO), 18.0 to 25.0 parts by mole of zinc oxide (ZnO), and 7.0 to 13.0 parts by mole of copper oxide (CuO). A ceramic electronic component manufactured using the magnetic material composition has an excellent Q-factor.
    Type: Application
    Filed: February 22, 2011
    Publication date: May 31, 2012
    Inventors: SUNG YONG AN, Jeoung Wook Kim, Sung Lyoung Kim, Soo Hwan Son, Jin Woo Hahn, Ic Seob Kim
  • Publication number: 20120126165
    Abstract: There are provided a composition for a ceramic electronic component having excellent sinterability and magnetic characteristics (Q), a manufacturing method thereof, and an electronic component using the same. The magnetic material composition for the ceramic electronic component is composed of ferric oxide (Fe203) of 47.0 to 49.0 parts by mole, nickel oxide (NiO) of 16.0 to 24.0 parts by mole, zinc oxide (ZnO) of 18.0 to 25.0 parts by mole, and copper oxide (CuO) of 7.0 to 13.0 parts by mole, wherein a portion of ferric oxide may be substituted with boron oxide (B2O3). The ceramic electronic component manufactured by using the magnetic material composition for the ceramic electronic component has an excellent Q.
    Type: Application
    Filed: February 24, 2011
    Publication date: May 24, 2012
    Inventors: Sung Yong AN, Ic Seob KIM, Sung Lyoung KIM, Soo Hwan SON, Jin Woo HAHN
  • Publication number: 20120119866
    Abstract: There is provided a non-magnetic material composition for a ceramic electronic component, a ceramic electronic component manufactured by using the same, and a method of manufacturing the ceramic electronic component. The non-magnetic material composition for the ceramic electronic component includes a compound represented by Chemical Formula Zn2TiO4. According to an exemplary embodiment of the present invention, the ceramic electronic component has improved DC bias characteristics by applying the non-magnetic material composition having no magnetic characteristics thereto.
    Type: Application
    Filed: March 15, 2011
    Publication date: May 17, 2012
    Inventors: Ic Seob KIM, Sung Lyoung Kim, Soo Hwan Son, Jin Woo Hahn, Sung Yong An
  • Publication number: 20120085963
    Abstract: Disclosed herein are a ferrite composition for a high frequency bead in that a part of Fe in M-type hexagonal ferrite represented by BaFe12O19 is substituted with at least one metal selected from a group consisting of 2-valence, 3-valence and 4-valence metals, as well as a chip bead material using the same. According to embodiments of the present invention, the dielectric composition is characterized in that a part of Fe as a constituent of M-type hexagonal barium ferrite is substituted by other metals, to thus decrease a sintering temperature to 920° C. or less without using any additive for low temperature sintering. Moreover, because of high SRF properties, the inventive composition is applicable to a multilayer type chip bead used at a high frequency of more than several hundreds MHz and a magnetic antenna.
    Type: Application
    Filed: October 3, 2011
    Publication date: April 12, 2012
    Inventors: Sung Yong AN, Jin Woo HAHN, Jeong Wook KIM, Sung Lyoung KIM, So Yeon SONG, Soo Hwan SON, Ic Seob KIM
  • Publication number: 20120056705
    Abstract: There is provided a layered inductor and a manufacturing method of the layered inductor. There is provided a layered inductor, comprising: a main body in which a plurality of non-magnetic layers are stacked; coil parts ha-ving a plurality of conductor patterns and a plurality of via electrodes formed on the plurality of non-magnetic layers; a plurality of magnetic paths formed in the inner central portion of the coil parts and passing the magnetic flux induced from the coil parts therethrough; and first and second external electrodes formed on the external surface of the main body to be connected to both ends of the coil part, respectively.
    Type: Application
    Filed: January 14, 2011
    Publication date: March 8, 2012
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Sung Lyoung KIM, Jin Woo HAHN, Ic Seob KIM, Sung Yong AN, Soo Hwan SON
  • Publication number: 20120013429
    Abstract: Provided is a multilayer inductor and a method of manufacturing the same. The multilayer inductor includes a plurality of deposited ferrite sheets, a coil part constituted by a plurality of internal electrode patterns and internal electrode vias formed on the plurality of ferrite sheets, non-magnetic vias formed at arbitrary positions of the plurality of ferrite sheets and filled with a non-magnetic material of paste so that a magnetic flux formed around the coil part can be dispersed, and a gap layer formed of a non-magnetic ferrite disposed at a center of the deposited ferrite sheets. Since a non-magnetic via is formed in the multilayer inductor, a magnetic flux propagation path in a coil can be dispersed and blocked to suppress magnetization at a high current and thus improve variation in inductance according to current application.
    Type: Application
    Filed: December 3, 2010
    Publication date: January 19, 2012
    Inventors: Sung Lyoung Kim, Jin Woo Hahn, Ic Seob Kim, Sung Yong An, Soo Hwan Son