Patents by Inventor Stefan Kolb

Stefan Kolb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10890153
    Abstract: A valve, in particular a suction valve (2), in particular in a high-pressure pump of a fuel injection system, has a valve element (14) that moves between an open position and a closed position, comprising a magnet armature (10) which is in mechanical contact with the valve element (14) in the axial direction and which is in contact with a first pressure spring (4) on the side facing away from the valve element (14), and wherein the magnet armature (10) can be axially moved via an electromagnetic actuation and same is supported in a starting position on a valve body (40) via a stop plate (20). The stop plate (20) is held in contact with the valve body (40) via a securing element (8).
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: January 12, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Stefan Kolb, Steffen Holm
  • Patent number: 10883759
    Abstract: A transport container for transporting an object includes an object location to receive the object and a vacuum insulation panel (VIP) to thermally insulate the object location. A sensor unit in the VIP provides a panel condition signal that corresponds to a measurement value of a physical property of the VIP. The physical property influences temperature of the object. A short-distance transmitter unit transmits a first coding of the PCS inside the Container, a long-distance transmitter unit transmits a second coding of the PCS to a remote server for processing the PCS. The server determines a representation of an operation state of the transport container, wherein the operation state is related to the temperature of the object. The material of the VIP is classified and differentiated so that transmitting parameters depend on the material.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: January 5, 2021
    Assignee: BASF SE
    Inventors: Frank Beham, Stefan Kolb, Philipp Johannes Boeckmann, Jan Kurt Walter Sandler, Marc Fricke, Elsie Jamin-Maguire, Joerg Krogmann
  • Patent number: 10856719
    Abstract: The invention proposes a cleaning device (110) for cleaning articles (116) to be cleaned. The cleaning device (110) comprises at least one cleaning chamber (114) and at least one application device (120) for applying at least one cleaning fluid to the articles (116) to be cleaned in the cleaning chamber (114). The cleaning device (110) further comprises at least one controller (157) which is designed to actuate the cleaning device (110) for carrying out at least two operating modes. The controller (157) is further designed to detect at least one utilization variable. The utilization variable characterizes a current utilization of the cleaning device (110). The controller (157) is further designed to assign at least one weighting to the at least one utilization variables.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: December 8, 2020
    Assignee: MEIKO MASCHINENBAU GMBH & CO. KG
    Inventors: Jürgen Dirschus, Phillip Huber, Stefan Kolb, Thomas Loos, Thomas Nager, Thomas Peukert, Marijan Simundic
  • Publication number: 20200355602
    Abstract: A gas sensor includes a multi-wafer stack of a plurality of layers and a measurement chamber. The plurality of layers includes a first layer comprising a sensor element that has a microelectromechanical system (MEMS) membrane; and a second layer comprising an emitter element configured to emit electromagnetic radiation. The measurement chamber is interposed between the first layer and the second layer. The measurement chamber is configured to receive a measurement gas and further receive the electromagnetic radiation emitted by the emitter element as the electromagnetic radiation travels along a radiation path from a first end of the measurement chamber to a second end of the measurement chamber that is opposite to the first end.
    Type: Application
    Filed: July 31, 2020
    Publication date: November 12, 2020
    Applicants: Infineon Technologies AG, Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V.
    Inventors: Stefan KOLB, Alfons DEHE, Jochen HUBER, Franz JOST, Horst THEUSS, Wilhelm WIEDMEIER, Juergen WOELLENSTEIN
  • Publication number: 20200284231
    Abstract: The invention relates to a valve, in particular a suction valve, in a high-pressure pump of a fuel injection system, having a valve element (14) which can be moved between an open position and a closed position and which is connected to a magnet armature (10) via an armature pin (8). An actuation force can be transmitted to the valve element (14) by the armature pin (8). The invention is characterized in that the armature pin (8) is partly introduced into a depression (24) of the magnet armature (10), and the armature pin (8) and the magnet armature (10) are connected together in a contact region (48) in a force-fitting manner by means of an interference fit (20). The armature pin (8) has a changing outer diameter (47), in particular a continuously changing outer diameter, along the contact region (48).
    Type: Application
    Filed: October 24, 2016
    Publication date: September 10, 2020
    Inventors: Andreas DUTT, Minzhi XIA, Stefan KOLB, Steffen HOLM, Tobias LANDENBERGER
  • Patent number: 10753858
    Abstract: Shown is a wafer arrangement for a gas sensor including a first substrate and a sescond substrate. The first substrate includes a MEMS membrane associated with a sensor element and an emitter element configured to emit electromagnetic radiation. The second substrate is arranged on top of the first substrate and defines at least a portion of a chamber disposed adjacent to the MEMS membrane.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: August 25, 2020
    Assignees: Infineon Technologies AG, Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V.
    Inventors: Stefan Kolb, Alfons Dehe, Jochen Huber, Franz Jost, Horst Theuss, Wilhelm Wiedmeier, Juergen Woellenstein
  • Patent number: 10748732
    Abstract: A microelectromechanical light emitter component comprises an emitter layer structure of the microelectromechanical light emitter component and an inductive structure of the microelectromechanical light emitter component. The inductive structure of the microelectromechanical light emitter component is configured to generate current in the emitter layer structure by electromagnetic induction, such that the emitter layer structure emits light. The emitter layer structure is electrically insulated from the inductive structure.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: August 18, 2020
    Assignee: Infineon Technologies AG
    Inventors: Matthias Eberl, Franz Jost, Stefan Kolb
  • Publication number: 20200182538
    Abstract: A transport container for transporting an object includes an object location to receive the object and a vacuum insulation panel (VIP) to thermally insulate the object location. A sensor unit in the VIP provides a panel condition signal that corresponds to a measurement value of a physical property of the VIP. The physical property influences temperature of the object. A short-distance transmitter unit transmits a first coding of the PCS inside the Container, a long-distance transmitter unit transmits a second coding of the PCS to a remote server for processing the PSC. The server determines a representation of an operation state of the transport container, wherein the operation state is related to the temperature of the object. The material of the VIP is classified and differentiated so that transmitting parameters depend on the material.
    Type: Application
    Filed: March 27, 2017
    Publication date: June 11, 2020
    Applicant: BASF SE
    Inventors: Frank BEHAM, Stefan KOLB, Plilipp Johannes BOECKMANN, Jan Kurt Walter SANDLER, Marc FRICKE, Elsie JAMIN-MAGUIRE, Joerg KROGMANN
  • Publication number: 20200103376
    Abstract: An apparatus for in-situ calibration of a photoacoustic sensor is provided. The apparatus includes a light emitter to emit light along a transmission path to a gas and an acoustic sensor element configured to detect an acoustic signal emitted from the gas based on the received light. Furthermore, the apparatus includes a sensing unit configured to detect the light transmitted along the transmission path and to provide an output signal, and a calibration unit to receive the output signal from the sensing unit and to provide a calibration information based on the output signal received from the sensing unit.
    Type: Application
    Filed: December 2, 2019
    Publication date: April 2, 2020
    Applicant: Infineon Technologies AG
    Inventors: Stefan KOLB, Alfons DEHE, Jochen HUBER, Franz JOST, Horst THEUSS, Juergen WOELLENSTEIN
  • Publication number: 20200080972
    Abstract: Photoacoustic gas sensor having a light pulse emitter, a microphone in a reference gas housing having a reference gas, and a sample gas housing to be filled with a gas to be analyzed. A wall separates the sample gas housing from the reference gas housing, and has a transparent region that is transparent to light within a frequency range of emitted light pulses. Remaining inner walls of the sample gas housing have a reflecting surface that reflect light pulses emitted by the emitter so that a portion of the light pulses not absorbed by the gas to be analyzed pass through the transparent region into the reference gas volume. The microphone generates a sensor signal indicating information on an acoustic wave caused by the light pulses interacting with the reference gas after crossing the gas to be analyzed.
    Type: Application
    Filed: November 18, 2019
    Publication date: March 12, 2020
    Inventors: Alfons Dehe, Stefan Kolb, Horst Theuss
  • Patent number: 10527589
    Abstract: An apparatus for in-situ calibration of a photoacoustic sensor is provided. The apparatus includes a light emitter to emit light along a transmission path to a gas and an acoustic sensor element configured to detect an acoustic signal emitted from the gas based on the received light. Furthermore, the apparatus includes a sensing unit configured to detect the light transmitted along the transmission path and to provide an output signal, and a calibration unit to receive the output signal from the sensing unit and to provide a calibration information based on the output signal received from the sensing unit.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: January 7, 2020
    Assignee: Infineon Technologies AG
    Inventors: Stefan Kolb, Alfons Dehe, Jochen Huber, Franz Jost, Horst Theuss, Juergen Woellenstein
  • Publication number: 20200000308
    Abstract: The invention proposes a cleaning device (110) for cleaning articles (116) to be cleaned. The cleaning device (110) comprises at least one cleaning chamber (114) and at least one application device (120) for applying at least one cleaning fluid to the articles (116) to be cleaned in the cleaning chamber (114). The cleaning device (110) further comprises at least one controller (157) which is designed to actuate the cleaning device (110) for carrying out at least two operating modes. The controller (157) is further designed to detect at least one utilization variable. The utilization variable characterizes a current utilization of the cleaning device (110). The controller (157) is further designed to assign at least one weighting to the at least one utilization variables.
    Type: Application
    Filed: February 7, 2018
    Publication date: January 2, 2020
    Inventors: Jürgen Dirschus, Phillip Huber, Stefan Kolb, Thomas Loos, Thomas Nager, Thomas Peukert, Marijan Simundic
  • Patent number: 10495612
    Abstract: A photoacoustic gas sensor device for analyzing gas includes an emitter module and a pressure-sensitive module. The emitter module is arranged on a carrier substrate and emits light pulses. The pressure-sensitive module is arranged on the carrier substrate within a reference gas volume. The reference gas volume is separated from a volume intended to be filled with a gas to be analyzed. Further, the pressure-sensitive module generates a sensor signal indicating information on an acoustic wave caused by light pulses emitted by the emitter module interacting with a reference gas within the reference gas volume. Additionally, the emitter module is arranged so that light pulses emitted by the emitter module reach the reference gas volume after crossing the volume intended to be filled with the gas to be analyzed.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: December 3, 2019
    Assignee: Infineon Technologies AG
    Inventors: Alfons Dehe, Stefan Kolb, Horst Theuss
  • Publication number: 20190323947
    Abstract: Shown is a wafer arrangement for a gas sensor including a first substrate and a sescond substrate. The first substrate includes a MEMS membrane associated with a sensor element and an emitter element configured to emit electromagnetic radiation. The second substrate is arranged on top of the first substrate and defines at least a portion of a chamber disposed adjacent to the MEMS membrane.
    Type: Application
    Filed: June 28, 2019
    Publication date: October 24, 2019
    Inventors: Stefan Kolb, Alfons Dehe, Jochen Huber, Franz Jost, Horst Theuss, Wilhelm Wiedmeier, Juergen Woellenstein
  • Patent number: 10451543
    Abstract: A photo-acoustic gas sensor is disclosed. The photo-acoustic gas sensor includes a substrate, a light emitter unit supported by the substrate, the light emitter unit including a light emitter configured to emit a beam of light pulses with a predetermined repetition frequency and wavelength corresponding to an absorption band of a gas to be sensed, and a detector unit supported by the substrate, the detector unit including a microphone, wherein the beam of light pulses traverses an area intended to accommodate the gas and the microphone can receive a signal oscillating with the repetition frequency.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: October 22, 2019
    Assignee: Infineon Technologies AG
    Inventors: Thomas Mueller, Horst Theuss, Klaus Elian, Rainer Markus Schaller, Stefan Kolb
  • Patent number: 10400728
    Abstract: The invention relates to an electromagnetically actuable intake valve for a high-pressure pump of a fuel injection system, in particular of a common-rail injection system, comprising a reciprocating valve closure element (2) that engages with a valve seat (1) and is loaded in the closing direction by the spring force of a valve spring (3) which is supported on a spring plate (4) connected to the valve closure element (2), further comprising a reciprocating armature (6) that engages with an electromagnet (5) and is loaded in the direction of the valve closure element (2) by the spring force of an armature spring (7) which is larger than that of the valve spring (3). According to the invention, the spring plate (4) has a first abutment face (9) for limiting the opening travel of the valve closure element (2) and a second abutment face (10) for mechanically coupling to the armature (6). The invention also relates to a high-pressure pump having such an intake valve.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: September 3, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Hans Heber, Stefan Kolb
  • Patent number: 10365208
    Abstract: Shown is a gas sensor including a sensor element, a measurement chamber and an emitter element. The sensor element has a MEMS membrane which is arranged in a first substrate region. Furthermore, the measurement chamber is embodied to receive a measurement gas.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: July 30, 2019
    Assignees: Infineon Technologies AG, Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V.
    Inventors: Stefan Kolb, Alfons Dehe, Jochen Huber, Franz Jost, Horst Theuss, Wilhelm Wiedmeier, Juergen Woellenstein
  • Publication number: 20190186449
    Abstract: The invention relates to an electromagnetically controllable suction valve (1) for a high-pressure fuel pump (2), comprising a magnet assembly (3) and a hydraulic module (4), the hydraulic module (4) engaging at least in sections in an annular magnet coil (5) of the magnet assembly (3). According to the invention, a heat-conducting material (6) and/or a heat-conducting body (7) is/are arranged between the magnet coil (5) and the hydraulic module (4). The invention further relates to a method for producing an electromagnetically actuatable suction valve (1).
    Type: Application
    Filed: August 2, 2017
    Publication date: June 20, 2019
    Inventors: Gabriel Cichon, Stefan Kolb, Steffen Holm, Tobias Landenberger
  • Publication number: 20190170702
    Abstract: An example of a system comprises a volume filled with a gas, a gas excitation device configured to excite the gas inside the volume, a microphone configured to output a microphone signal on the basis of the gas excited by the gas excitation device, and a testing unit configured to take the microphone signal as a basis for testing a gas-tightness of the volume. An example of a photoacoustic sensor comprises a hermetically sealed sensor cell, a gas excitation device and a testing unit configured to take the microphone signal dependent on the thermally excited gas as a basis for testing a gas-tightness of the sensor cell. One example comprises a method for testing a gas-tightness of a volume filled with a gas.
    Type: Application
    Filed: November 29, 2018
    Publication date: June 6, 2019
    Inventors: Matthias Eberl, Franz Jost, Stefan Kolb
  • Publication number: 20190162142
    Abstract: The invention relates to a valve, in particular a suction valve (2), in particular in a high-pressure pump of a fuel injection system, having a valve element (14) that moves between an open position and a closed position, comprising a magnet armature (10) which is in mechanical contact with the valve element (14) in the axial direction and which is in contact with a first pressure spring (4) on the side facing away from the valve element (14), and wherein the magnet armature (10) can be axially moved via an electromagnetic actuation and same is supported in a starting position on a valve body (40) via a stop plate (20). According to the invention, the stop plate (20) is held in contact with the valve body (40) via a securing element (8). The invention also relates to a high-pressure pump comprising a suction valve of this type.
    Type: Application
    Filed: March 1, 2017
    Publication date: May 30, 2019
    Inventors: Stefan Kolb, Steffen Holm