Patents by Inventor Stephen Daley Arthur

Stephen Daley Arthur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8765524
    Abstract: A method of forming a silicon carbide transient voltage suppressor (TVS) assembly and a system for a transient voltage suppressor (TVS) assembly are provided. The TVS assembly includes a semiconductor die in a mesa structure that includes a first layer of a first wide band gap semiconductor having a conductivity of a first polarity, a second layer of the first or a second wide band gap semiconductor having a conductivity of a second polarity coupled in electrical contact with the first layer wherein the second polarity is different than the first polarity. The TVS assembly also includes a third layer of the first, the second, or a third wide band gap semiconductor having a conductivity of the first polarity coupled in electrical contact with the second layer. The layer having a conductivity of the second polarity is lightly doped relative to the layers having a conductivity of the first polarity.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: July 1, 2014
    Assignee: General Electric Company
    Inventors: Avinash Srikrishnan Kashyap, David Mulford Shaddock, Emad Andarawis Andarawis, Peter Micah Sandvik, Stephen Daley Arthur, Vinayak Tilak
  • Publication number: 20140159141
    Abstract: An insulating gate field effect transistor (IGFET) device includes a semiconductor body and a gate oxide. The semiconductor body includes a first well region doped with a first type of dopant and a second well region that is doped with an oppositely charged second type of dopant and is located within the first well region. The gate oxide includes an outer section and an interior section having different thickness dimensions. The outer section is disposed over the first well region and the second well region of the semiconductor body. The interior section is disposed over a junction gate field effect transistor region of the semiconductor body. The semiconductor body is configured to form a conductive channel through the second well region and the junction gate field effect transistor region when a gate signal is applied to a gate contact disposed on the gate oxide.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 12, 2014
    Applicant: General Electric Company
    Inventors: Stephen Daley Arthur, Kevin Sean Matocha, Ramakrishna Rao, Peter Losee, Alexander Viktorovich Bolotnikov
  • Patent number: 8691634
    Abstract: A thyristor device includes a semiconductor body and a conductive anode. The semiconductor body has a plurality of doped layers forming a plurality of dopant junctions and includes an optical thyristor, a first amplifying thyristor, and a switching thyristor. The conductive anode is disposed on a first side of the semiconductor body. The optical thyristor is configured to receive incident radiation to generate a first electric current, and the first amplifying thyristor is configured to increase the first electric current from the optical thyristor to at least a threshold current. The switching thyristor switches to the conducting state in order to conduct a second electric current from the anode and through the semiconductor body.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: April 8, 2014
    Assignee: General Electric Company
    Inventors: Ahmed Elasser, Stephen Daley Arthur, Alexey Vert, Stanislav Ivanovich Soloviev, Peter Almern Losee
  • Publication number: 20140070229
    Abstract: An electrical device includes a blocking layer disposed on top of a substrate layer, wherein the blocking layer and the substrate layer each are wide bandgap semiconductors, and the blocking layer and the substrate layer form a buried junction in the electrical device. The device comprises a termination feature disposed at a surface of the blocking layer and a filled trench disposed proximate to the termination feature. The filled trench extends through the blocking layer to reach the substrate layer and is configured to direct an electrical potential associated with the buried junction toward the termination feature disposed near the surface of the blocking layer to terminate the buried junction.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 13, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Zachary Matthew Stum, Ahmed Elasser, Stephen Daley Arthur, Stanislav I. Soloviev, Peter Almern Losee
  • Publication number: 20140034963
    Abstract: A semiconductor device is disclosed along with methods for manufacturing such a device. In certain embodiments, the semiconductor device includes a source electrode formed using a metal that limits a shift, such as due to bias temperature instability, in a threshold voltage of the semiconductor device during operation. In certain embodiments the semiconductor device may be based on silicon carbide.
    Type: Application
    Filed: August 6, 2012
    Publication date: February 6, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Joseph Darryl Michael, Stephen Daley Arthur, Tammy Lynn Johnson, David Alan Lilienfeld
  • Publication number: 20140027782
    Abstract: A system includes a silicon carbide (SiC) semiconductor device and a hermetically sealed packaging enclosing the SiC semiconductor device. The hermetically sealed packaging is configured to maintain a particular atmosphere near the SiC semiconductor device. Further, the particular atmosphere limits a shift in a threshold voltage of the SiC semiconductor device to less than 1 V during operation.
    Type: Application
    Filed: July 30, 2012
    Publication date: January 30, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Joseph Darryl Michael, Stephen Daley Arthur
  • Publication number: 20130328064
    Abstract: A method of forming a silicon carbide transient voltage suppressor (TVS) assembly and a system for a transient voltage suppressor (TVS) assembly are provided. The TVS assembly includes a semiconductor die in a mesa structure that includes a first layer of a first wide band gap semiconductor having a conductivity of a first polarity, a second layer of the first or a second wide band gap semiconductor having a conductivity of a second polarity coupled in electrical contact with the first layer wherein the second polarity is different than the first polarity. The TVS assembly also includes a third layer of the first, the second, or a third wide band gap semiconductor having a conductivity of the first polarity coupled in electrical contact with the second layer. The layer having a conductivity of the second polarity is lightly doped relative to the layers having a conductivity of the first polarity.
    Type: Application
    Filed: August 15, 2013
    Publication date: December 12, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Avinash Srikrishnan Kashyap, David Mulford Shaddock, Emad Andarawis Andarawis, Peter Micah Sandvik, Stephen Daley Arthur, Vinayak Tilak
  • Publication number: 20130323873
    Abstract: A thyristor device includes a semiconductor body and a conductive anode. The semiconductor body has a plurality of doped layers forming a plurality of dopant junctions and includes an optical thyristor, a first amplifying thyristor, and a switching thyristor. The conductive anode is disposed on a first side of the semiconductor body. The optical thyristor is configured to receive incident radiation to generate a first electric current, and the first amplifying thyristor is configured to increase the first electric current from the optical thyristor to at least a threshold current. The switching thyristor switches to the conducting state in order to conduct a second electric current from the anode and through the semiconductor body.
    Type: Application
    Filed: August 7, 2013
    Publication date: December 5, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: AHMED ELASSER, STEPHEN DALEY ARTHUR, ALEXEY VERT, STANISLAV IVANOVICH SOLOVIEV, PETER ALMERN LOSEE
  • Patent number: 8536641
    Abstract: A semiconductor device includes a substrate comprising a semiconductor material. The substrate has a surface that defines a surface normal direction and includes a P-N junction comprising an interface between a first region and a second region, where the first (second) region includes a first (second) dopant type, so as to have a first (second) conductivity type. The substrate includes a termination extension region disposed adjacent to the P-N junction and having an effective concentration of the second dopant type that is generally the effective concentration of the second dopant type in the second doped region. The substrate includes an adjust region disposed adjacent to the surface and between the surface and at least part of the termination extension region, where the effective concentration of the second dopant type generally decreases when moving from the termination extension region into the adjust region along the surface normal direction.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: September 17, 2013
    Assignee: General Electric Company
    Inventors: Ramakrishna Rao, Stephen Daley Arthur, Peter Almern Losee, Kevin Dean Matocha
  • Patent number: 8530902
    Abstract: A method of forming a silicon carbide transient voltage suppressor (TVS) assembly and a system for a transient voltage suppressor (TVS) assembly are provided. The TVS assembly includes a semiconductor die in a mesa structure that includes a first layer of a first wide band gap semiconductor having a conductivity of a first polarity, a second layer of the first or a second wide band gap semiconductor having a conductivity of a second polarity coupled in electrical contact with the first layer wherein the second polarity is different than the first polarity. The TVS assembly also includes a third layer of the first, the second, or a third wide band gap semiconductor having a conductivity of the first polarity coupled in electrical contact with the second layer. The layer having a conductivity of the second polarity is lightly doped relative to the layers having a conductivity of the first polarity.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: September 10, 2013
    Assignee: General Electric Company
    Inventors: Avinash Srikrishnan Kashyap, David Mulford Shaddock, Emad Andarawis Andarawis, Peter Micah Sandvik, Stephen Daley Arthur, Vinayak Tilak
  • Publication number: 20130221374
    Abstract: A semiconductor device includes a substrate comprising a semiconductor material. The substrate has a surface that defines a surface normal direction and includes a P-N junction comprising an interface between a first region and a second region, where the first (second) region includes a first (second) dopant type, so as to have a first (second) conductivity type. The substrate includes a termination extension region disposed adjacent to the P-N junction and having an effective concentration of the second dopant type that is generally the effective concentration of the second dopant type in the second doped region. The substrate includes an adjust region disposed adjacent to the surface and between the surface and at least part of the termination extension region, where the effective concentration of the second dopant type generally decreases when moving from the termination extension region into the adjust region along the surface normal direction.
    Type: Application
    Filed: August 29, 2012
    Publication date: August 29, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ramakrishna Rao, Stephen Daley Arthur, Peter Almern Losee, Kevin Sean Matocha
  • Patent number: 8507986
    Abstract: In one embodiment, the invention comprises a MOSFET comprising individual MOSFET cells. Each cell comprises a U-shaped well (P type) and two parallel sources (N type) formed within the well. A Number of source rungs (doped N) connect sources at multiple locations. Regions between two rungs comprise a body (P type). These features are formed on an N-type epitaxial layer, which is formed on an N-type substrate. A contact extends across and contacts a number of source rungs and bodies. Gate oxide and a gate contact overlie a leg of a first well and a leg of a second adjacent well, inverting the conductivity responsive to a gate voltage. A MOSFET comprises a plurality of these cells to attain a desired low channel resistance. The cell regions are formed using self-alignment techniques at several states of the fabrication process.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: August 13, 2013
    Assignee: General Electric Company
    Inventors: Stephen Daley Arthur, Kevin Sean Matocha, Peter Micah Sandvik, Zachary Matthew Stum, Peter Almren Losee, James Jay McMahon
  • Patent number: 8466007
    Abstract: A power semiconductor module includes: an interconnect layer including an electrical conductor patterned on a dielectric layer, the electrical conductor including a power coupling portion having a thickness sufficient to carry power currents and a control coupling portion having a thickness thinner than that of the power coupling portion; and a semiconductor power device physically coupled to the interconnect layer and electrically coupled to the power coupling portion of the electrical conductor.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: June 18, 2013
    Assignee: General Electric Company
    Inventors: Eladio Clemente Delgado, Richard Alfred Beaupre, Stephen Daley Arthur, Ernest Wayne Balch, Kevin Matthew Durocher, Paul Alan McConnelee, Raymond Albert Fillion
  • Publication number: 20130105816
    Abstract: A method of forming a silicon carbide transient voltage suppressor (TVS) assembly and a system for a transient voltage suppressor (TVS) assembly are provided. The TVS assembly includes a semiconductor die in a mesa structure that includes a first layer of a first wide band gap semiconductor having a conductivity of a first polarity, a second layer of the first or a second wide band gap semiconductor having a conductivity of a second polarity coupled in electrical contact with the first layer wherein the second polarity is different than the first polarity. The TVS assembly also includes a third layer of the first, the second, or a third wide band gap semiconductor having a conductivity of the first polarity coupled in electrical contact with the second layer. The layer having a conductivity of the second polarity is lightly doped relative to the layers having a conductivity of the first polarity.
    Type: Application
    Filed: October 26, 2011
    Publication date: May 2, 2013
    Inventors: Avinash Srikrishnan Kashyap, David Mulford Shaddock, Emad Andarawis Andarawis, Peter Micah Sandvik, Stephen Daley Arthur, Vinayak Tilak
  • Publication number: 20130075756
    Abstract: According to one embodiment, a semiconductor device, having a semiconductor substrate comprising silicon carbide with a gate electrode disposed on a portion of the substrate on a first surface with, a drain electrode disposed on a second surface of the substrate. There is a dielectric layer disposed on the gate electrode and a remedial layer disposed about the dielectric layer, wherein the remedial layer is configured to mitigate negative bias temperature instability maintaining a change in threshold voltage of less than about 1 volt. A source electrode is disposed on the remedial layer, wherein the source electrode is electrically coupled to a contact region of the semiconductor substrate.
    Type: Application
    Filed: March 27, 2012
    Publication date: March 28, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Stephen Daley Arthur, Joseph Darryl Michael, Tammy Lynn Johnson, David Alan Lilienfeld, Kevin Sean Matocha, Jody Alan Fronheiser, William Gregg Hawkins
  • Patent number: 8377756
    Abstract: In one embodiment, the invention comprises a MOSFET comprising individual MOSFET cells. Each cell comprises a U-shaped well (228) (P type) and two parallel sources (260) (N type) formed within the well. A plurality of source rungs (262) (doped N) connect sources (260) at multiple locations. Regions between two rungs (262) comprise a body (252) (P type). These features are formed on an N-type epitaxial layer (220), which is formed on an N-type substrate (216). A contact (290) extends across and contacts a plurality of source rungs (262) and bodies (252). Gate oxide and a gate contact overlie a leg of a first well and a leg of a second adjacent well, inverting the conductivity responsive to a gate voltage. A MOSFET comprises a plurality of these cells to attain a desired low channel resistance. The cell regions are formed using self-alignment techniques at several states of the fabrication process.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: February 19, 2013
    Assignee: General Electric Company
    Inventors: Stephen Daley Arthur, Kevin Matocha, Peter Sandvik, Zachary Stum, Peter Losee, James McMahon
  • Patent number: 8377812
    Abstract: The present invention provides a method of fabricating a metal oxide semiconductor field effect transistor. The method includes the steps of forming a source region on a silicon carbide layer and annealing the source region. A gate oxide layer is formed on the source region and the silicon carbide layer. The method further includes providing a gate electrode on the gate oxide layer and disposing a dielectric layer on the gate electrode and the gate oxide layer. The method further includes etching a portion of the dielectric layer and a portion of the gate oxide layer to form sidewalls on the gate electrode. A metal layer is disposed on the gate electrode, the sidewalls and the source region. The method further includes forming a gate contact and a source contact by subjecting the metal layer to a temperature of at least about 800° C. The gate contact and the source contact comprise a metal silicide. The distance between the gate contact and the source contact is less than about 0.6 ?m.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: February 19, 2013
    Assignee: General Electric Company
    Inventors: Kevin Sean Matocha, Gregory Keith Dudoff, William Gregg Hawkins, Zachary Matthew Stum, Stephen Daley Arthur, Dale Marius Brown
  • Publication number: 20130026559
    Abstract: In one embodiment, the invention comprises a MOSFET comprising individual MOSFET cells. Each cell comprises a U-shaped well (228) (P type) and two parallel sources (260) (N type) formed within the well. A plurality of source rungs (262) (doped N) connect sources (260) at multiple locations. Regions between two rungs (262) comprise a body (252) (P type). These features are formed on an N-type epitaxial layer (220), which is formed on an N-type substrate (216). A contact (290) extends across and contacts a plurality of source rungs (262) and bodies (252). Gate oxide and a gate contact overlie a leg of a first well and a leg of a second adjacent well, inverting the conductivity responsive to a gate voltage. A MOSFET comprises a plurality of these cells to attain a desired low channel resistance. The cell regions are formed using self-alignment techniques at several states of the fabrication process.
    Type: Application
    Filed: July 26, 2011
    Publication date: January 31, 2013
    Inventors: Stephen Daley Arthur, Kevin Matocha, Peter Sandvik, Zachary Stum, Peter Losee, James McMahon
  • Patent number: 8278711
    Abstract: A substrate having semiconductor material and a surface that supports a gate electrode and defines a surface normal direction is provided. The substrate can include a drift region including a first dopant type. A well region can be disposed adjacent to the drift region and proximal to the surface, and can include a second dopant type. A termination extension region can be disposed adjacent to the well region and extend away from the gate electrode, and can have an effective concentration of second dopant type that is generally less than that in the well region. An adjust region can be disposed between the surface and at least part of the termination extension region. An effective concentration of second dopant type may generally decrease when moving from the termination extension region into the adjust region along the surface normal direction.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: October 2, 2012
    Assignee: General Electric Company
    Inventors: Ramakrishna Rao, Stephen Daley Arthur, Peter Almern Losee, Kevin Dean Matocha
  • Patent number: 8216370
    Abstract: A method for removing defects at high pressure and high temperature (HP/HT) or for relieving strain in a non-diamond crystal commences by providing a crystal, which contains defects, and a pressure medium. The crystal and the pressure medium are disposed in a high pressure cell and placed in a high pressure apparatus, for processing under reaction conditions of sufficiently high pressure and high temperature for a time adequate for one or more of removing defects or relieving strain in the single crystal.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: July 10, 2012
    Assignee: Momentive Performance Materials Inc.
    Inventors: Mark Philip D'Evelyn, Thomas Richard Anthony, Stephen Daley Arthur, Lionel Monty Levinson, John William Lucek, Larry Burton Rowland, Suresh Shankarappa Vagarali