Patents by Inventor Steven C. Avanzino

Steven C. Avanzino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6756306
    Abstract: The reliability and electromigration life-time of planarized metallization features, e.g., copper, inlaid in the surface of a layer of dielectric material, are enhanced by a chemical vapor deposition process for depositing a passivation layer over the metallization patterns which comprises maintaining on the upper surfaces of the metallization features, at or below a first temperature, an inhibiting film previously deposited thereon. The inhibiting film substantially inhibits oxide layer formation on the surface of the metallization features below the first temperature. Passivation layer deposition occurs at a second temperature higher than the first temperature such that the time interval between removal of the inhibiting film and formation of the passivation layer is short enough to substantially inhibit the formation of oxides on the surface of the metal feature.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: June 29, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Steven C. Avanzino, Darrell M. Erb
  • Patent number: 6723635
    Abstract: Low-k ILDs are protected from degradation during damascene processing by depositing a thin, conformal silicon carbide liner with a silicon-rich surface before barrier metal layer deposition. Embodiments include forming a dual damascene opening in porous low-k dielectric layers, depositing a thin silicon carbide liner with a silicon-rich surface lining the opening, depositing a barrier metal layer, such as a Ta/TaN composite, and filling the opening with Cu.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: April 20, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Minh Van Ngo, Christy Mei-Chu Woo, Steven C. Avanzino, John E. Sanchez, Jr., Suzette K. Pangrle
  • Patent number: 6720264
    Abstract: A Ta barrier slurry for Chemical-Mechanical Polishing (CMP) during copper metallization contains an organic additive which suppresses formation of precipitates and copper staining. The organic additive is chosen from a class of compounds which form multiple strong adsorbant bonds to the surface of silica or copper, which provide a high degree of surface coverage onto the reactive species, thereby occupying potential reaction sites, and which are sized to sterically hinder the collisions between two reactant molecules which result in new bond formation. The organic additive-containing slurry cain be utilized throughout the entire polish time. Alternatively, a slurry not containing the organic additive can be utilized for a first portion of the polish, and a slurry containing the organic additive or a polishing solution containing the organic additive can be utilized for a second portion of the polish.
    Type: Grant
    Filed: December 26, 2000
    Date of Patent: April 13, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Kashmir S. Sahota, Diana M. Schonauer, Johannes F. Groschopf, Gerd F. C. Marxsen, Steven C. Avanzino
  • Patent number: 6702648
    Abstract: One aspect of the present invention relates to a system and method for examining a wafer for delamination in real time while polishing the wafer. The system comprises a polishing system programmed to planarize one or more film layers formed on at least a portion of a semiconductor wafer surface; a real-time metrology system coupled to the polishing system such that the metrology system examines the layers as they are planarized; and one or more delamination sensors, wherein at least a portion of each sensor is integrated into the polishing system in order to provide data to the metrology system and wherein the sensor comprises at least one optical element to detect delamination during polishing. The method involves polishing at least a portion of an uppermost film layer and examining at least a portion of a layer underlying the uppermost film layer for delamination as the uppermost layer is being polished.
    Type: Grant
    Filed: October 22, 2002
    Date of Patent: March 9, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Steven C. Avanzino, Bhanwar Singh, Bharath Rangarajan, Ramkumar Subramanian
  • Patent number: 6699785
    Abstract: A manufacturing method is provided having a semiconductor substrate with a semiconductor device. A device dielectric layer is formed on the semiconductor substrate. A channel dielectric layer on the device dielectric layer has an opening formed therein. A barrier layer lines the channel opening. A conductor core fills the opening over the barrier layer. By using a polishing solution having a high selectivity from the conductor core to the barrier layer in conjunction with a grooved polyurethane polish pad, a very thin barrier layer may be used without the conductor core and dielectric layer being subject to erosion and the conductor core being subject to dishing.
    Type: Grant
    Filed: February 26, 2003
    Date of Patent: March 2, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Kai Yang, Kashmir S. Sahota, Steven C. Avanzino
  • Publication number: 20040023511
    Abstract: The reliability and electromigration life-time of planarized metallization features, e.g., copper, inlaid in the surface of a layer of dielectric material, are enhanced by a chemical vapor deposition process for depositing a passivation layer over the metallization patterns which comprises maintaining on the upper surfaces of the metallization features, at or below a first temperature, an inhibiting film previously deposited thereon. The inhibiting film substantially inhibits oxide layer formation on the surface of the metallization features below the first temperature. Passivation layer deposition occurs at a second temperature higher than the first temperature such that the time interval between removal of the inhibiting film and formation of the passivation layer is short enough to substantially inhibit the formation of oxides on the surface of the metal feature.
    Type: Application
    Filed: December 30, 2002
    Publication date: February 5, 2004
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Steven C. Avanzino, Darrell M. Erb
  • Patent number: 6684172
    Abstract: One aspect of the invention relates to a metal fill process and systems therefor involving providing a standard calibration wafer having a plurality of fill features of known dimensions in a metalization tool; depositing a metal material over the standard calibration wafer; monitoring the deposition of metal material using a sensor system, the sensor system operable to measure one or more fill process parameters and to generate fill process data; controlling the deposition of metal material to minimize void formation using a control system wherein the control system receives fill process data from the sensor system and analyzes the fill process data to generate a feed-forward control data operative to control the metalization tool; and depositing metal material over a production wafer in the metalization tool using the fill process data generated by the sensor system and the control system. The invention further relates to tool characterization processes and systems therefor.
    Type: Grant
    Filed: December 27, 2001
    Date of Patent: January 27, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Ramkumar Subramanian, Steven C. Avanzino, Christopher F. Lyons, Khoi A. Phan, Bharath Rangarajan, Bhanwar Singh, Cyrus E. Tabery
  • Patent number: 6682978
    Abstract: The present invention is directed to an integrated circuit having an increased gate coupling capacitance. The integrated circuit includes a substrate having a surface, the substrate having a trench extending below the surface. A trench fill material is disposed in the trench and has a portion extending above the surface. A first conductive layer is adjacent the trench fill material and has a portion extending over the portion of the insulative material. An insulative layer is adjacent the first conductive layer and a second conductive layer is adjacent the insulative layer. The present invention further is directed to a method of fabricating an integrated circuit on a substrate including the steps of forming a trench in the substrate, the trench extending below a surface of the substrate; providing a trench fill material in the trench such that the trench fill material extends above the surface of the substrate; and providing a first conductive layer over at least a portion of the trench fill material.
    Type: Grant
    Filed: February 15, 2000
    Date of Patent: January 27, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Stephen Keetai Park, Steven C. Avanzino
  • Patent number: 6657304
    Abstract: A manufacturing method, and an integrated circuit resulting therefrom, has a substrate and a semiconductor device thereon. A stop layer over the substrate has a first dielectric layer formed thereon having an opening into which a first conformal barrier is formed. A first conformal barrier liner is formed in the opening, processed, and treated to improve adhesion. Portions of the first conformal barrier liner on the sidewalls act as a barrier to diffusion of conductor core material to the first dielectric layer. A conductor material is formed in the opening over the vertical portions of the first conformal barrier liner and the first stop layer.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: December 2, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Christy Mei-Chu Woo, Minh Van Ngo, John E. Sanchez, Jr., Steven C. Avanzino
  • Patent number: 6657303
    Abstract: An integrated circuit and manufacturing method therefor is provided having a semiconductor substrate with a semiconductor device. A device dielectric layer formed on the semiconductor substrate. A channel dielectric layer on the device dielectric layer has an opening formed therein. A barrier layer lines the channel opening. A conductor core fills the opening over the barrier layer. A cerium-conductor interconnect cap is disposed over the conductor core with a capping layer over the dielectric layer and the cerium-conductor interconnect cap.
    Type: Grant
    Filed: December 12, 2001
    Date of Patent: December 2, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Pin-Chin Connie Wang, Steven C. Avanzino
  • Publication number: 20030218253
    Abstract: A precursor of a low-k porous dielectric is applied to an integrated circuit substrate. The precursor comprises a host thermosetting material and a porogen. Crosslinking of at least some of the first host thermosetting material is produced to form a low-k dielectric matrix without decomposing all of the porogen. This leaves a solid nonporous layer of the low-k dielectric matrix. Wiring elements are then inlaid in the low-k dielectric matrix. After the wiring elements are formed, remaining porogen is decomposed to leave pores in the low-k dielectric matrix. The resulting wiring elements are smooth walled.
    Type: Application
    Filed: December 13, 2001
    Publication date: November 27, 2003
    Inventors: Steven C. Avanzino, Darrell M. Erb, Fei Wang, Sergey Lopatin
  • Patent number: 6642145
    Abstract: An integrated circuit and manufacturing method therefor is provided having a semiconductor substrate with a semiconductor device. A dielectric layer formed over the semiconductor substrate has an opening provided therein. The dielectric layer is of non-barrier dielectric material capable of being changed into a barrier dielectric material. The dielectric layer around the opening is changed into the barrier dielectric material and the conductor core material is deposited to fill the opening. The conductor core is processed to form a channel for the integrated circuit.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: November 4, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Steven C. Avanzino, Pin-Chin Connie Wang, Minh Van Ngo
  • Publication number: 20030188829
    Abstract: A system for characterizing a chemical mechanical polishing process is provided. The system includes a wafer that has a metal, polysilicon, and/or dielectric layer and/or substrate and electrical resistance member(s) and/or electrical resistance entities located in and/or on the metal, polysilicon and/or dielectric layer and/or substrate. The system also includes a electrical resistance monitoring system that can read the wafer electrical resistance(s) from the electrical resistance member(s) and/or electrical resistance entities and that can determine wafer stress(es) based upon the electrical resistance(s) to characterize the chemical mechanical polishing process. Such characterization includes producing information concerning relationships between wafer electrical resistance(s) and polishing rate, polishing uniformity and introduction of defects during polishing. Such relationships are correlated with wafer electrical resistance(s) (e.g.
    Type: Application
    Filed: December 27, 2001
    Publication date: October 9, 2003
    Inventors: Bharath Rangarajan, Steven C. Avanzino, Ramkumar Subramanian, Bhanwar Singh
  • Patent number: 6624642
    Abstract: Disclosed is a wafer containing a semiconductor substrate, at least one metal layer formed over the semiconductor substrate, and at least one electrical sensor embedded at least one of on and in the wafer to facilitate real time monitoring of the metal layer as it progresses through a subtractive metallization process. The system contains a wafer comprising at least one metal layer formed on a semiconductor substrate, at least one electrical sensor in contact with the wafer and operable to detect and transmit electrical activity associated with the wafer, and an electrical measurement station operable to process electrical activity detected and received from the electrical sensor for monitoring a subtractive metallization process in real-time.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: September 23, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Christopher F. Lyons, Ramkumar Subramanian, Steven C. Avanzino
  • Publication number: 20030146512
    Abstract: An integrated circuit and manufacturing method therefor is provided having a semiconductor substrate with a semiconductor device. A device dielectric layer is formed on the semiconductor substrate. A channel dielectric layer on the device dielectric layer has an opening formed therein. A barrier layer lines the channel opening. A conductor core fills the opening over the barrier layer. By using a polishing solution having a high selectivity from the conductor core to the barrier layer in conjunction with a grooved polyurethane polish pad, a very thin barrier layer may be used without the conductor core and dielectric layer being subject to erosion and the conductor core being subject to dishing.
    Type: Application
    Filed: February 26, 2003
    Publication date: August 7, 2003
    Inventors: Kai Yang, Kashmir S. Sahota, Steven C. Avanzino
  • Patent number: 6599827
    Abstract: The electromigration resistance of capped Cu or Cu alloy interconnects is significantly improved by pumping out the deposition chamber after treating the exposed planarized surface of the Cu or Cu alloy with an ammonia-containing plasma, introducing NH3 and N2 into the deposition chamber, and then ramping up the introduction of SiH4 prior to initiating deposition of a silicon nitride capping layer. Embodiments include ramping up the introduction of SiH4 in two stages prior to initiating plasma enhanced chemical vapor deposition of the silicon nitride capping layer.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: July 29, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Minh Van Ngo, Steven C. Avanzino, Amit P. Marathe, Hartmut Ruelke
  • Patent number: 6596637
    Abstract: The formation and/or growth of dendrites emanating from Cu or Cu alloy lines into a bordering open dielectric field are prevented or substantially reduced by chemically removing a portion of the surface from the dielectric field and from between the lines after CMP by immersing the wafer in a bath containing a chemical agent. Embodiments include removing up to 60 Å of silicon oxide by immersing the wafer in an acidic solution, such as a solution of hydrofluoric acid and water.
    Type: Grant
    Filed: December 7, 1998
    Date of Patent: July 22, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Diana M. Schonauer, Steven C. Avanzino, Kai Yang
  • Patent number: 6593632
    Abstract: The capacitance between the gate of a transistor and local interconnect is reduced employing SiC as an etch stop layer. Embodiments include depositing a SiC etch stop layer having a thickness of about 500-1000 Å and a dielectric constant of less than about 3.2, thereby providing a composite dielectric constant between the gate and local interconnect of between about 3.7 to about 4.7. The SiC etch stop layer can be deposited by PECVD or HDP techniques.
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: July 15, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Steven C. Avanzino, Minh Van Ngo, Angela T. Hui, Chun Jiang, Hamid Partovi
  • Patent number: 6562185
    Abstract: A system for characterizing a chemical mechanical polishing process is provided. The system includes a wafer that has a metal, polysilicon, and/or dielectric layer and/or substrate and a temperature sensor located in and/or on the metal, polysilicon and/or dielectric layer and/or substrate. The system also includes a temperature monitoring system that can read the wafer temperature from the temperature sensors and that can analyze the wafer temperature to characterize the chemical mechanical polishing process. Such characterization includes producing information concerning relationships between wafer temperature and polishing rate, polishing uniformity and introduction of defects during polishing. Such relationships are correlated with wafer temperature as related to parameters like polishing time, pressure, speed, slurry properties and wafer/metal layer properties.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: May 13, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Steven C. Avanzino, Bhanwar Singh, Bharath Rangarajan, Ramkumar Subramanian
  • Patent number: 6548336
    Abstract: A new device and technique to realize an improved integrated circuit device incorporates an improved polysilicon upper surface. This improvement is achieved by approximately planarizing an upper surface of the polysilicon layer. First, the polysilicon layer is preferably formed as a relatively thicker layer as compared to the layer thickness in a conventional device. Then a portion of the polysilicon layer is removed, preferably utilizing a chemical mechanical polish technique. Thus, this embodiment achieves a relatively planarized upper surface of the polysilicon layer. Then, for example, a conventional metal or silicide layer may be formed upon the relatively planarized polysilicon layer. This approximately planarized upper surface of the polysilicon layer allows for a silicide layer to be formed with a relative reduction in the amount and/or severity of the conventional word line voids and seams.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: April 15, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Steven C. Avanzino, Steven K. Park