Patents by Inventor Steven Huynh

Steven Huynh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8079007
    Abstract: A programmable analog tile integrated circuit programming tool communicates a power management control characteristic query soliciting control requirement information for a novel power management integrated circuit (PMIC) tile in a multi-tile power management integrated circuit (MTPMIC). The programming tool receives a user response to the query indicating control requirements across a network. The novel PMIC tiles have a pre-defined physical structure including all memory structures required for configuration of each tile and a bus portion. When combined in a multi-tile power management integrated circuit (MTPMIC), the bus portions of the selected tiles automatically form a standardized bus that accommodates all signal communication required for a functioning MTPMIC. The memory structure of each tile is individually addressable via the standardized bus. Thus, in response to control requirements, the programming tool programs a PMIC tile that is part of a MTPMIC to meet the control requirements.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: December 13, 2011
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Matthew A. Grant, Gary M. Hurtz, David J. Kunst, Trey A. Roessig
  • Patent number: 8077487
    Abstract: In a first aspect, in a Primary Side Regulation (PSR) power supply, some primary current pulses are used to forward bias an output diode such that an auxiliary winding voltage can be properly sampled after each pulse. The samples are used to regulate the power supply output voltage (VOUT). Other primary current pulses, however, are of a smaller peak amplitude. These pulses are not used for VOUT regulation, but rather are used to determine whether the VOUT has dropped. In a second aspect, a transient current detector circuit within the PSR controller integrated circuit detects whether an optocoupler current has dropped in a predetermined way. If the TRS current detector detects that the optocoupler current has dropped, then the power supply stops operating in a sleep mode and is made to operate in another higher power operating mode in which the power supply switches.
    Type: Grant
    Filed: May 1, 2010
    Date of Patent: December 13, 2011
    Assignee: Active-Semi, Inc.
    Inventor: Steven Huynh
  • Patent number: 8059429
    Abstract: In a first aspect, in a Primary Side Regulation (PSR) power supply, some primary current pulses are used to forward bias an output diode such that an auxiliary winding voltage can be properly sampled after each pulse. The samples are used to regulate the power supply output voltage (VOUT). Other primary current pulses, however, are of a smaller peak amplitude. These pulses are not used for VOUT regulation, but rather are used to determine whether the VOUT has dropped. In a second aspect, a transient current detector circuit within the PSR controller integrated circuit detects whether an optocoupler current has dropped in a predetermined way. If the TRS current detector detects that the optocoupler current has dropped, then the power supply stops operating in a sleep mode and is made to operate in another higher power operating mode in which the power supply switches.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: November 15, 2011
    Assignee: Active-Semi, Inc.
    Inventor: Steven Huynh
  • Patent number: 8040699
    Abstract: A low-cost integrated circuit is used as a secondary side constant voltage and constant current controller. The integrated circuit has four terminals and two amplifier circuits. A first amplifier circuit is used to sense a voltage on a FB terminal and in response to cause a first current to flow through an OPTO terminal. A second amplifier circuit is used to sense a voltage between a SENSE terminal and a SOURCE terminal and in response to cause a second current to flow through the same OPTO terminal. The FB terminal is used for output voltage feedback and is also used to supply power onto the integrated circuit. The SOURCE terminal is used for output current feedback and is also used as power supply return for the integrated circuit. The cost of the integrated circuit is reduced by having only four terminals.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: October 18, 2011
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Zhibo Tao, David J. Kunst, Matthew Grant
  • Publication number: 20110227490
    Abstract: An LED lamp includes a rectifier, an integrated circuit and a string of series-connected LEDs. The lamp receives an incoming AC signal such that a rectified version of the signal is present across the LED string. The integrated circuit includes a plurality of power switches. Each power switch is coupled so that it can separately and selectably short out a corresponding one of several groups of LEDs in the string. As the voltage across the string increases the integrated circuit controls the power switches such that the number of LEDs through which current flows increases, whereas as the voltage across the string decreases the integrated circuit controls the power switches such that the number of LEDs through which current flows decreases. LED string current flow is controlled and regulated to provide superior efficiency, reliability, anti-flicker, regulation against line voltage variations, power factor correction, and lamp over-voltage, over-current, and over-temperature protection.
    Type: Application
    Filed: July 31, 2010
    Publication date: September 22, 2011
    Inventor: Steven Huynh
  • Publication number: 20110227489
    Abstract: An LED lamp with an integrated circuit, a rectifier, and a string of series-connected LEDs rectifies an incoming AC signal. The integrated circuit includes power switches that can separately and selectably short out a corresponding one of several groups of LEDs in an LED string across which the rectified AC signal is present. As the voltage across the string increases, the integrated circuit controls the power switches to increase the number of LEDs through which current flows, whereas as the voltage across the string decreases the integrated circuit controls the power switches to decrease the number of LEDs through which current flows. The flow of LED string current is broken to reduce flicker. Alternatively, a valley fill capacitor peaks LED current during the valleys of the incoming AC signal to reduce flicker. LED current is regulated to provide superior efficiency, reliability, power-factor correction, and lamp over-voltage, -current, and -temperature protection.
    Type: Application
    Filed: May 4, 2010
    Publication date: September 22, 2011
    Inventor: Steven Huynh
  • Publication number: 20110227484
    Abstract: An LED lamp includes a rectifier, an integrated circuit and a string of series-connected LEDs. The lamp receives an incoming AC signal such that a rectified version of the signal is present across the LED string. The integrated circuit includes a plurality of power switches. Each power switch is coupled so that it can separately and selectably short out a corresponding one of several groups of LEDs in the string. As the voltage across the string increases the integrated circuit controls the power switches such that the number of LEDs through which current flows increases, whereas as the voltage across the string decreases the integrated circuit controls the power switches such that the number of LEDs through which current flows decreases. LED string current flow is controlled and regulated to provide superior efficiency, reliability, anti-flicker, regulation against line voltage variations, power factor correction, and lamp over-voltage, over-current, and over-temperature protection.
    Type: Application
    Filed: April 21, 2011
    Publication date: September 22, 2011
    Inventor: Steven Huynh
  • Publication number: 20110227485
    Abstract: An LED lamp includes a rectifier, an integrated circuit and a string of series-connected LEDs. The lamp receives an incoming AC signal such that a rectified version of the signal is present across the LED string. The integrated circuit includes a plurality of power switches. Each power switch is coupled so that it can separately and selectably short out a corresponding one of several groups of LEDs in the string. As the voltage across the string increases the integrated circuit controls the power switches such that the number of LEDs through which current flows increases, whereas as the voltage across the string decreases the integrated circuit controls the power switches such that the number of LEDs through which current flows decreases. LED string current flow is controlled and regulated to provide superior efficiency, reliability, anti-flicker, regulation against line voltage variations, power factor correction, and lamp over-voltage, over-current, and over-temperature protection.
    Type: Application
    Filed: March 19, 2010
    Publication date: September 22, 2011
    Inventor: Steven Huynh
  • Patent number: 8018741
    Abstract: A lower-cost and more precise control methodology of regulating the output voltage of a flyback converter from the primary side is provided, which works accurately in either continuous voltage mode (CCM) and discontinuous mode (DCM), and can be applied to most small, medium and high power applications such cell phone chargers, power management in desktop computers and networking equipment, and, generally, to a wide spectrum of power management applications. Two highly integrated semiconductor chips based on this control methodology are also described that require very few components to build a constant voltage flyback converter.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: September 13, 2011
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Mingliang Chen, Chuan Xiao, Mingfan Yu
  • Publication number: 20110157936
    Abstract: In a first aspect, in a Primary Side Regulation (PSR) power supply, some primary current pulses are used to forward bias an output diode such that an auxiliary winding voltage can be properly sampled after each pulse. The samples are used to regulate the power supply output voltage (VOUT). Other primary current pulses, however, are of a smaller peak amplitude. These pulses are not used for VOUT regulation, but rather are used to determine whether the VOUT has dropped. In a second aspect, a transient current detector circuit within the PSR controller integrated circuit detects whether an optocoupler current has dropped in a predetermined way. If the TRS current detector detects that the optocoupler current has dropped, then the power supply stops operating in a sleep mode and is made to operate in another higher power operating mode in which the power supply switches.
    Type: Application
    Filed: December 31, 2009
    Publication date: June 30, 2011
    Inventor: Steven Huynh
  • Publication number: 20110157924
    Abstract: In a first aspect, in a Primary Side Regulation (PSR) power supply, some primary current pulses are used to forward bias an output diode such that an auxiliary winding voltage can be properly sampled after each pulse. The samples are used to regulate the power supply output voltage (VOUT). Other primary current pulses, however, are of a smaller peak amplitude. These pulses are not used for VOUT regulation, but rather are used to determine whether the VOUT has dropped. In a second aspect, a transient current detector circuit within the PSR controller integrated circuit detects whether an optocoupler current has dropped in a predetermined way. If the TRS current detector detects that the optocoupler current has dropped, then the power supply stops operating in a sleep mode and is made to operate in another higher power operating mode in which the power supply switches.
    Type: Application
    Filed: May 1, 2010
    Publication date: June 30, 2011
    Inventor: Steven Huynh
  • Patent number: 7969753
    Abstract: A lower-cost and more precise control methodology of regulating the output voltage of a flyback converter from the primary side is provided, which works accurately in either continuous voltage mode (CCM) and discontinuous mode (DCM), and can be applied to most small, medium and high power applications such cell phone chargers, power management in desktop computers and networking equipment, and, generally, to a wide spectrum of power management applications. Two highly integrated semiconductor chips based on this control methodology are also described that require very few components to build a constant voltage flyback converter.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: June 28, 2011
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Mingliang Chen, Chuan Xiao, Mingfan Yu
  • Patent number: 7961483
    Abstract: A comparing circuit and a control loop are used to maintain the peak level of current flowing through an inductor of a flyback converter. An inductor switch control signal controls an inductor switch through which the inductor current flows. The inductor current increases at a ramp-up rate during a ramp time and stops increasing at the end of the ramp time. The comparing circuit generates a timing signal that indicates a target time at which the inductor current would reach a predetermined current limit if the inductor current continued to increase at the ramp-up rate. The control loop then receives the timing signal and compares the target time to the end of the ramp time. The pulse width of the inductor switch control signal is increased when the target time occurs after the end of the ramp time. Adjusting the pulse width controls the peak of the inductor current.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: June 14, 2011
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Matthew Grant, David Kunst, Zhibo Tao
  • Publication number: 20110074352
    Abstract: A cord correction circuit in a primary-side-controlled flyback converter compensates for the loss of output voltage caused by the resistance of the charger cord. In one embodiment, a correction voltage is subtracted from a feedback voltage received from a primary-side auxiliary inductor. A pre-amplifier then compares a reference voltage to the corrected feedback voltage. In another embodiment, the correction voltage is summed with the reference voltage, and the pre-amplifier compares the feedback voltage to the corrected reference voltage. The difference between the voltages on the input leads of the pre-amplifier is used to increase the output voltage to compensate for the voltage lost through the charger cord. The flyback converter also has a comparing circuit and a control loop that maintain the peak level of current flowing through the primary inductor of the converter. Adjusting the frequency and pulse width of an inductor switch signal controls the converter output current.
    Type: Application
    Filed: November 29, 2010
    Publication date: March 31, 2011
    Inventors: Steven Huynh, Matthew Grant, David Kunst, Zhibo Tao
  • Patent number: 7911808
    Abstract: A comparing circuit and a control loop are used to maintain the peak level of current flowing through an inductor of a flyback converter. An inductor switch control signal controls an inductor switch through which the inductor current flows. The inductor current increases at a ramp-up rate during a ramp time and stops increasing at the end of the ramp time. The comparing circuit generates a timing signal that indicates a target time at which the inductor current would reach a predetermined current limit if the inductor current continued to increase at the ramp-up rate. The control loop then receives the timing signal and compares the target time to the end of the ramp time. The pulse width of the inductor switch control signal is increased when the target time occurs after the end of the ramp time. Adjusting the pulse width controls the peak of the inductor current.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: March 22, 2011
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Matthew Grant, David Kunst, Zhibo Tao
  • Patent number: 7911814
    Abstract: A flyback converter includes a controller integrated circuit (IC) housed in an IC package with only three terminals. An inexpensive TO-92 transistor package can be used. A switch terminal is coupled to an inductor switch that is turned on by a switch control signal having a frequency and a pulse width. The inductor switch controls the current that flows through a primary inductor of the flyback converter. The controller IC adjusts the frequency in a constant current mode such that output current remains constant and adjusts the pulse width in a constant voltage mode such that output voltage remains constant. A power terminal receives a feedback signal that is derived from a voltage across an auxiliary inductor of the flyback converter. The feedback signal provides power to the controller IC and is also used to generate the switch control signal. The controller IC is grounded through a ground terminal.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: March 22, 2011
    Assignee: Active-Semi, Inc.
    Inventors: Zhibo Tao, David Kunst, Steven Huynh
  • Patent number: 7904864
    Abstract: A method of constructing an integrated circuit involves selecting modular tiles and then generating a functional circuit layout using the tiles. Modular tiles that perform predetermined functions and that have approximately the same length and width dimensions are selected from a library of validated tiles. The tiles have input-output terminals embedded in their upper active layers. A functional circuit layout for the integrated circuit is generated using the tiles. In many implementations, the physical layout of the integrated circuit does not include the step of routing. Then an interconnect layer is added over the functional circuitry of the tiles and connects the input-output terminals to bond pads located at the perimeter of the functional circuit layout. Chip data corresponding to the functional circuit layout is generated, and then mask reticles corresponding to the chip data are generated. The integrated circuit is formed on a wafer based on the mask reticles.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: March 8, 2011
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, David Kunst
  • Patent number: 7876078
    Abstract: Techniques for near zero light-load supply current in switching power supply are described. In one embodiment, a switching power supply comprises sub-circuits, a capacitor/inverter circuit, and a standby control circuit. The sub-circuits comprise a feedback resistor that supplies a fraction of an output voltage of the power supply, an integrator that provides an integrator output, a comparator that provides a pulse width modulated signal, a switching element that receives the pulse width modulated signal and modulates current such that the power supply provides a regulated voltage, and a monitoring circuit that provides a logic low signal when the pulse width modulated signal is absent over a period of time. The standby control circuit disables the sub-circuits when the logical low signal is detected permitting the switching power supply to operate at a minimum current, an re-enables the sub-circuits when an out of regulation signal from the capacitor/inverter circuit is detected.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: January 25, 2011
    Assignee: Active-Semi, Inc.
    Inventors: Richard Landry Gray, Steven Huynh
  • Patent number: 7869229
    Abstract: A cord correction circuit in a primary-side-controlled flyback converter compensates for the loss of output voltage caused by the resistance of the charger cord. In one embodiment, a correction voltage is subtracted from a feedback voltage received from a primary-side auxiliary inductor. A pre-amplifier then compares a reference voltage to the corrected feedback voltage. In another embodiment, the correction voltage is summed with the reference voltage, and the pre-amplifier compares the feedback voltage to the corrected reference voltage. The difference between the voltages on the input leads of the pre-amplifier is used to increase the output voltage to compensate for the voltage lost through the charger cord. The flyback converter also has a comparing circuit and a control loop that maintain the peak level of current flowing through the primary inductor of the converter. Adjusting the frequency and pulse width of an inductor switch signal controls the converter output current.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: January 11, 2011
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Matthew Grant, David Kunst, Zhibo Tao
  • Patent number: 7869275
    Abstract: An integrated circuit includes a plurality of tiles. One tile is a master tile. Other tiles contain writable registers of memory structures. Information for configuring circuitry of the tile is stored in the register in the tile. An individual one of the registers can be written via the master tile. Each memory structure of a register includes a non-volatile floating gate cell (that stores the configuration information) as well as a volatile cell. All transistors have the same gate insulator thickness. Although a programming pulse signal is applied to all memory structures, the state of the non-volatile cell of a memory structure is only changed if the state stored by the associated non-volatile cell differs from the state stored by the volatile cell. Floating gates are automatically refreshed by the programming pulse signal. By storing configuration information in each tile, inefficiencies associated with using blocks of non-volatile memory are avoided.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: January 11, 2011
    Assignee: Active-Semi, Inc.
    Inventors: Matthew A. Grant, David J. Kunst, Steven Huynh