Patents by Inventor Steven Huynh

Steven Huynh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090315165
    Abstract: An integrated circuit (IC) and fabrication method thereof is provided that include the steps of specifying a plurality of required tile modules suitable for a particular end application, each of the modular tiles being configured to perform a predetermined function and constructed to have approximately the same length and width dimensions. The modular tiles are used to form the IC in a standard IC fabrication process. In many implementations, physical layout of the IC does not include the step of routing. Capabilities also include configuring the modular tiles to have programmable performance parameters and configuring the modular tiles to cooperate usefully with one another based on a programmable parameter.
    Type: Application
    Filed: August 21, 2009
    Publication date: December 24, 2009
    Inventors: Steven Huynh, David Kunst
  • Publication number: 20090319959
    Abstract: An integrated circuit (IC) and fabrication method thereof is provided that include the steps of specifying a plurality of required tile modules suitable for a particular end application, each of the modular tiles being configured to perform a predetermined function and constructed to have approximately the same length and width dimensions. The modular tiles are used to form the IC in a standard IC fabrication process. In many implementations, physical layout of the IC does not include the step of routing. Capabilities also include configuring the modular tiles to have programmable performance parameters and configuring the modular tiles to cooperate usefully with one another based on a programmable parameter.
    Type: Application
    Filed: August 21, 2009
    Publication date: December 24, 2009
    Inventors: Steven Huynh, David Kunst
  • Publication number: 20090319975
    Abstract: An integrated circuit (IC) and fabrication method thereof is provided that include the steps of specifying a plurality of required tile modules suitable for a particular end application, each of the modular tiles being configured to perform a predetermined function and constructed to have approximately the same length and width dimensions. The modular tiles are used to form the IC in a standard IC fabrication process. In many implementations, physical layout of the IC does not include the step of routing. Capabilities also include configuring the modular tiles to have programmable performance parameters and configuring the modular tiles to cooperate usefully with one another based on a programmable parameter.
    Type: Application
    Filed: August 25, 2009
    Publication date: December 24, 2009
    Inventors: Steven Huynh, David Kunst
  • Patent number: 7635956
    Abstract: A lower-cost and more precise control methodology of regulating the output voltage of a flyback converter from the primary side is provided, which works accurately in either continuous voltage mode (CCM) and discontinuous mode (DCM), and can be applied to most small, medium and high power applications such cell phone chargers, power management in desktop computers and networking equipment, and, generally, to a wide spectrum of power management applications. Two highly integrated semiconductor chips based on this control methodology are also described that require very few components to build a constant voltage flyback converter.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: December 22, 2009
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Mingliang Chen, Chuan Xiao, Mingfan Yu
  • Patent number: 7636246
    Abstract: A start-up time accelerator is described for a switch controller that controls turning on or off a switch in a switching regulator. The start-up time accelerator uses the switch as a current amplifier and provides the amplified current to a capacitor using a current amplification path. In one example, the capacitor provides the bias voltage to a switch controller for the switch. Providing an amplified current to the capacitor accelerates the rate at which the bias voltage increases and reduces the time until the bias voltage reaches the turn-on threshold voltage of the switch controller. After the turn-on threshold voltage of the switch controller is reached, a second path is enabled for current to and from the capacitor and the capacitor provides the bias voltage to the switch controller until a voltage from an output voltage terminal is sufficiently high to provide the bias voltage for the switch controller through an auxiliary winding of a transformer.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: December 22, 2009
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Zhibo Tao, David Kunst
  • Publication number: 20090295348
    Abstract: A flyback converter includes a controller integrated circuit (IC) housed in an IC package with only three terminals. An inexpensive TO-92 transistor package can be used. A switch terminal is coupled to an inductor switch that is turned on by a switch control signal having a frequency and a pulse width. The inductor switch controls the current that flows through a primary inductor of the flyback converter. The controller IC adjusts the frequency in a constant current mode such that output current remains constant and adjusts the pulse width in a constant voltage mode such that output voltage remains constant. A power terminal receives a feedback signal that is derived from a voltage across an auxiliary inductor of the flyback converter. The feedback signal provides power to the controller IC and is also used to generate the switch control signal. The controller IC is grounded through a ground terminal.
    Type: Application
    Filed: May 30, 2008
    Publication date: December 3, 2009
    Inventors: Zhibo Tao, David Kunst, Steven Huynh
  • Publication number: 20090284238
    Abstract: An integrated circuit includes a buck converter controller, a PFET, an NFET that is coupled in common drain configuration to the PFET, a first microbump that is connected to the source of the PFET, a second microbump that is connected to the source of the NFET, a third microbump that is connected to the common drain node, a fourth microbump that is connected to a feedback input lead of the controller, and a plurality of other microbumps. The other microbumps are utilized to supply signals to and/or to conduct signals from the controller. A respective one of the four microbumps is disposed to occupy a respective one of the four corners of a square pattern. The other microbumps are disposed in a regular grid along with the four microbumps, but none of the other microbumps is disposed between any two of the four microbumps.
    Type: Application
    Filed: July 2, 2009
    Publication date: November 19, 2009
    Inventors: Steven Huynh, David J. Kunst
  • Patent number: 7616459
    Abstract: A primary side controlled power converter having a voltage sensing means coupled to a transformer of the power converter and configured to provide a voltage feedback waveform representative of an output of the transformer is provided. A primary switching circuit operates to control energy storage of a primary side of the transformer. The primary switching circuit is operable during an on time and inoperable during an off time. The on and off time is switched at a system frequency. A feedback amplifier generates an error signal indicative of a difference between the voltage feedback waveform and a reference voltage. A sample and hold circuit samples the error signal at a periodic frequency during the off time. An error signal amplifier is configured to provide the sampled value to the primary switching circuit wherein the primary switching circuit controls the transformer and thereby regulates an output of the power converter.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: November 10, 2009
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Mingliang Chen, Mingfan Yu
  • Publication number: 20090230550
    Abstract: An integrated circuit (IC) and fabrication method thereof is provided that include the steps of specifying a plurality of required tile modules suitable for a particular end application, each of the modular tiles being configured to perform a predetermined function and constructed to have approximately the same length and width dimensions. The modular tiles are used to form the IC in a standard IC fabrication process. In many implementations, physical layout of the IC does not include the step of routing. Capabilities also include configuring the modular tiles to have programmable performance parameters and configuring the modular tiles to cooperate usefully with one another based on a programmable parameter.
    Type: Application
    Filed: May 19, 2009
    Publication date: September 17, 2009
    Inventors: Steven Huynh, David Kunst
  • Patent number: 7581198
    Abstract: An integrated circuit (IC) and fabrication method thereof is provided that include the steps of specifying a plurality of required tile modules suitable for a particular end-application, each of the modular tiles being configured to perform a predetermined function and constructed to have approximately the same length and width dimensions. The modular tiles are used to form the IC in a standard IC fabrication process. In many implementations, the physical layout of the IC does not include the step of routing. Capabilities also include configuring the modular tiles to have programmable performance parameters and configuring the modular tiles to cooperate usefully with one another based on a programmable parameter.
    Type: Grant
    Filed: October 7, 2006
    Date of Patent: August 25, 2009
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, David Kunst
  • Publication number: 20090207636
    Abstract: A comparing circuit and a control loop are used to maintain the peak level of current flowing through an inductor of a flyback converter. An inductor switch control signal controls an inductor switch through which the inductor current flows. The inductor current increases at a ramp-up rate during a ramp time and stops increasing at the end of the ramp time. The comparing circuit generates a timing signal that indicates a target time at which the inductor current would reach a predetermined current limit if the inductor current continued to increase at the ramp-up rate. The control loop then receives the timing signal and compares the target time to the end of the ramp time. The pulse width of the inductor switch control signal is increased when the target time occurs after the end of the ramp time. Adjusting the pulse width controls the peak of the inductor current.
    Type: Application
    Filed: April 20, 2009
    Publication date: August 20, 2009
    Inventors: Steven Huynh, Matthew Grant, David Kunst, Zhibo Tao
  • Publication number: 20090132987
    Abstract: An integrated circuit (IC) and fabrication method thereof is provided that include the steps of specifying a plurality of required tile modules suitable for a particular end application, each of the modular tiles being configured to perform a predetermined function and constructed to have approximately the same length and width dimensions. The modular tiles are used to form the IC in a standard IC fabrication process. In many implementations, physical layout of the IC does not include the step of routing. Capabilities also include configuring the modular tiles to have programmable performance parameters and configuring the modular tiles to cooperate usefully with one another based on a programmable parameter.
    Type: Application
    Filed: January 3, 2009
    Publication date: May 21, 2009
    Inventors: Steven Huynh, David Kunst
  • Patent number: 7522431
    Abstract: A comparing circuit and a control loop are used to maintain the peak level of current flowing through an inductor of a flyback converter. An inductor switch control signal controls an inductor switch through which the inductor current flows. The inductor current increases at a ramp-up rate during a ramp time and stops increasing at the end of the ramp time. The comparing circuit generates a timing signal that indicates a target time at which the inductor current would reach a predetermined current limit if the inductor current continued to increase at the ramp-up rate. The control loop then receives the timing signal and compares the target time to the end of the ramp time. The pulse width of the inductor switch control signal is increased when the target time occurs after the end of the ramp time. Adjusting the pulse width controls the peak of the inductor current.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: April 21, 2009
    Assignee: Active-Semi International, Inc.
    Inventors: Steven Huynh, Matthew Grant, David Kunst, Zhibo Tao
  • Publication number: 20090091953
    Abstract: A comparing circuit and a control loop are used to maintain the peak level of current flowing through an inductor of a flyback converter. An inductor switch control signal controls an inductor switch through which the inductor current flows. The inductor current increases at a ramp-up rate during a ramp time and stops increasing at the end of the ramp time. The comparing circuit generates a timing signal that indicates a target time at which the inductor current would reach a predetermined current limit if the inductor current continued to increase at the ramp-up rate. The control loop then receives the timing signal and compares the target time to the end of the ramp time. The pulse width of the inductor switch control signal is increased when the target time occurs after the end of the ramp time. Adjusting the pulse width controls the peak of the inductor current.
    Type: Application
    Filed: December 3, 2008
    Publication date: April 9, 2009
    Inventors: Steven Huynh, Matthew Grant, david Kunst, Zhibo Tao
  • Publication number: 20090073727
    Abstract: A lower-cost and more precise control methodology of regulating the output voltage of a flyback converter from the primary side is provided, which works accurately in either continuous voltage mode (CCM) and discontinuous mode (DCM), and can be applied to most small, medium and high power applications such cell phone chargers, power management in desktop computers and networking equipment, and, generally, to a wide spectrum of power management applications. Two highly integrated semiconductor chips based on this control methodology are also described that require very few components to build a constant voltage flyback converter.
    Type: Application
    Filed: November 12, 2008
    Publication date: March 19, 2009
    Inventors: Steven Huynh, Mingliang Chen, Chuan Xiao, Mingfan Yu
  • Publication number: 20090058387
    Abstract: A lower-cost and more precise control methodology of regulating the output voltage of a flyback converter from the primary side is provided, which works accurately in either continuous voltage mode (CCM) and discontinuous mode (DCM), and can be applied to most small, medium and high power applications such cell phone chargers, power management in desktop computers and networking equipment, and, generally, to a wide spectrum of power management applications. Two highly integrated semiconductor chips based on this control methodology are also described that require very few components to build a constant voltage flyback converter.
    Type: Application
    Filed: October 24, 2008
    Publication date: March 5, 2009
    Inventors: Steven Huynh, Mingliang Chen, Chuan Xiao, Mingfan Yu
  • Publication number: 20090040793
    Abstract: A start-up time accelerator is described for a switch controller that controls turning on or off a switch in a switching regulator. The start-up time accelerator uses the switch as a current amplifier and provides the amplified current to a capacitor using a current amplification path. In one example, the capacitor provides the bias voltage to a switch controller for the switch. Providing an amplified current to the capacitor accelerates the rate at which the bias voltage increases and reduces the time until the bias voltage reaches the turn-on threshold voltage of the switch controller. After the turn-on threshold voltage of the switch controller is reached, a second path is enabled for current to and from the capacitor and the capacitor provides the bias voltage to the switch controller until a voltage from an output voltage terminal is sufficiently high to provide the bias voltage for the switch controller through an auxiliary winding of a transformer.
    Type: Application
    Filed: August 10, 2007
    Publication date: February 12, 2009
    Inventors: Steven Huynh, Zhibo Tao, David Kunst
  • Publication number: 20090016086
    Abstract: A low-cost integrated circuit is used as a secondary side constant voltage and constant current controller. The integrated circuit has four terminals and two amplifier circuits. A first amplifier circuit is used to sense a voltage on a FB terminal and in response to cause a first current to flow through an OPTO terminal. A second amplifier circuit is used to sense a voltage between a SENSE terminal and a SOURCE terminal and in response to cause a second current to flow through the same OPTO terminal. The FB terminal is used for output voltage feedback and is also used to supply power onto the integrated circuit. The SOURCE terminal is used for output current feedback and is also used as power supply return for the integrated circuit. The cost of the integrated circuit is reduced by having only four terminals.
    Type: Application
    Filed: July 9, 2007
    Publication date: January 15, 2009
    Inventors: Steven Huynh, Zhibo Tao, David J. Kunst, Matthew Grant
  • Publication number: 20080284408
    Abstract: A system involves LED strings and programmable current source circuits (CSC). An LED current flows through each LED string. Each LED current is controlled by an associated programmable CSC. In one embodiment, the CSCs form a chain. A first CSC uses a reference current for calibration, and thereafter supplies the reference current to the next CSC. When the next CSC detects the reference current, it uses the reference current for calibration. CSCs are calibrated one by one down the chain. In a second embodiment, each CSC can receive the reference current from a common conductor. If the common conductor is detected to be available, then the CSC uses the reference current for calibration. When the conductor is in use, the other CSCs detect the conductor as unavailable and do not attempt to self-calibrate. The CSCs use the reference current one by one, but in an order that changes over time.
    Type: Application
    Filed: June 29, 2007
    Publication date: November 20, 2008
    Inventors: David J. Kunst, Steven Huynh, Richard L. Gray
  • Publication number: 20080259654
    Abstract: A cord correction circuit in a primary-side-controlled flyback converter compensates for the loss of output voltage caused by the resistance of the charger cord. In one embodiment, a correction voltage is subtracted from a feedback voltage received from a primary-side auxiliary inductor. A pre-amplifier then compares a reference voltage to the corrected feedback voltage. In another embodiment, the correction voltage is summed with the reference voltage, and the pre-amplifier compares the feedback voltage to the corrected reference voltage. The difference between the voltages on the input leads of the pre-amplifier is used to increase the output voltage to compensate for the voltage lost through the charger cord. The flyback converter also has a comparing circuit and a control loop that maintain the peak level of current flowing through the primary inductor of the converter. Adjusting the frequency and pulse width of an inductor switch signal controls the converter output current.
    Type: Application
    Filed: August 28, 2007
    Publication date: October 23, 2008
    Applicant: Active-Semi International, Inc.
    Inventors: Steven Huynh, Matthew Grant, David Kunst, Zhibo Tao