Patents by Inventor Steven J. Holmes

Steven J. Holmes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10618806
    Abstract: A biosensor includes an array of electrically conductive nanorods formed on a substrate. The nanorods each includes a nanoscale porous coating formed on a surface of the nanorods from silicon dioxide layers. An enzyme coating is bound to the porous coating.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: April 14, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven J. Holmes, Emily R. Kinser, Qinghuang Lin, Nathan P. Marchack, Roy R. Yu
  • Publication number: 20200108244
    Abstract: A nanodevice includes an array of metal nanorods formed on a substrate. An electropolymerized electrical conductor is formed over tops of a portion of the nanorods to form a reservoir between the electropolymerized conductor and the substrate. The electropolymerized conductor includes pores that open or close responsively to electrical signals applied to the nanorods. A cell loading region is disposed in proximity of the reservoir, and the cell loading region is configured to receive stem cells. A neurotrophic dispensing material is loaded in the reservoir to be dispersed in accordance with open pores to affect growth of the stem cells when in vivo.
    Type: Application
    Filed: November 22, 2019
    Publication date: April 9, 2020
    Inventors: Steven J. Holmes, Qinghuang Lin, Emily R. Kinser, Nathan P. Marchack, Roy R. Yu
  • Publication number: 20200094300
    Abstract: A biosensor includes an array of metal nanorods formed on a substrate. An electropolymerized conductor is formed over tops of a portion of the nanorods to form a reservoir between the electropolymerized conductor and the substrate. The electropolymerized conductor includes pores that open and close responsively to electrical signals applied to the nanorods. A dispensing material is loaded in the reservoir to be dispersed in accordance with open pores.
    Type: Application
    Filed: November 26, 2019
    Publication date: March 26, 2020
    Inventors: Steven J. Holmes, Emily R. Kinser, Qinghuang Lin, Nathan P. Marchack, Roy R. Yu
  • Publication number: 20200087700
    Abstract: Embodiments of the present invention are directed to a semiconductor device. A non-limiting example of the semiconductor device includes a semiconductor substrate. The semiconductor device also includes a plurality of metal nanopillars formed on the substrate. The semiconductor device also includes an amperometric sensor associated with one of the plurality of nanopillars, wherein the amperometric sensor is selective to an enzyme-active neurotransmitter. The semiconductor device also includes a resistivity sensor associated with a pair of nanopillars, wherein the resistivity sensor is selective to an analyte.
    Type: Application
    Filed: November 22, 2019
    Publication date: March 19, 2020
    Inventors: HARIKLIA DELIGIANNI, BRUCE B. DORIS, STEVEN J. HOLMES, QINGHUANG LIN, ROY R. YU
  • Patent number: 10585060
    Abstract: Embodiments of the invention are directed to a biosensing integrated circuit (IC). A non-limiting example of the biosensing IC includes a plurality of semiconductor substrate layers. A sensor element is formed over a first one of the plurality of semiconductor substrate layers, wherein the sensor element is configured to, based at least in part on the sensor element interacting with a predetermined material, generate data representing a measureable electrical parameter. An adhesion enhancement region is configured to physically couple the sensor element to the first one of the plurality of semiconductor substrate layers. In some embodiments of the invention, the biosensing IC further includes an electrically conductive interconnect network configured to communicatively couple the data representing the measureable electrical parameter to computer elements.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: March 10, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, Bruce B. Doris, Damon B. Farmer, Steven J. Holmes, Qinghuang Lin, Nathan P. Marchack, Deborah A. Neumayer, Roy R. Yu
  • Patent number: 10583471
    Abstract: A biosensor includes an array of metal nanorods formed on a substrate. An electropolymerized conductor is formed over tops of a portion of the nanorods to form a reservoir between the electropolymerized conductor and the substrate. The electropolymerized conductor includes pores that open and close responsively to electrical signals applied to the nanorods. A dispensing material is loaded in the reservoir to be dispersed in accordance with open pores.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: March 10, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven J. Holmes, Emily R. Kinser, Qinghuang Lin, Nathan P. Marchack, Roy R. Yu
  • Patent number: 10583282
    Abstract: A nanodevice includes an array of metal nanorods formed on a substrate. An electropolymerized electrical conductor is formed over tops of a portion of the nanorods to form a reservoir between the electropolymerized conductor and the substrate. The electropolymerized conductor includes pores that open or close responsively to electrical signals applied to the nanorods. A cell loading region is disposed in proximity of the reservoir, and the cell loading region is configured to receive stem cells. A neurotrophic dispensing material is loaded in the reservoir to be dispersed in accordance with open pores to affect growth of the stem cells when in vivo.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: March 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Steven J. Holmes, Qinghuang Lin, Emily R. Kinser, Nathan P. Marchack, Roy R. Yu
  • Publication number: 20200033322
    Abstract: In an approach, a biomedical device comprises at least one electrode, wherein the at least one electrode is coupled with a computer chip; at least two chemical sensors, wherein the at least two chemical sensors are coupled with the computer chip; the computer chip, wherein the computer chip comprises: a semiconductor substrate, and a processor; a microfluidic structure, wherein the microfluidic structure is an inert elastomeric polymer; a power supply device coupled to the computer chip; and an antenna configured to send data collected onto the computer chip to a remote server. In an approach, a processor stimulating a cell sample. A processor senses the presence of at least two types of biomolecules released by the cell sample. A processor records data collected by the at least two chemical sensors. A processor sends the recorded data to a remote server.
    Type: Application
    Filed: July 26, 2018
    Publication date: January 30, 2020
    Inventors: Harikilia Deligianni, Bruce B. Doris, Steven J. Holmes, Emily R. Kinser, Qinghuang Lin
  • Publication number: 20200009368
    Abstract: A nanodevice includes an array of metal nanorods formed on a substrate. An electropolymerized electrical conductor is formed over tops of a portion of the nanorods to form a reservoir between the electropolymerized conductor and the substrate. The electropolymerized conductor includes pores that open or close responsively to electrical signals applied to the nanorods. A cell loading region is disposed in proximity of the reservoir, and the cell loading region is configured to receive stem cells. A neurotrophic dispensing material is loaded in the reservoir to be dispersed in accordance with open pores to affect growth of the stem cells when in vivo.
    Type: Application
    Filed: September 17, 2019
    Publication date: January 9, 2020
    Inventors: Steven J. Holmes, Qinghuang Lin, Emily R. Kinser, Nathan P. Marchack, Roy R. Yu
  • Publication number: 20200009369
    Abstract: A nanodevice includes an array of metal nanorods formed on a substrate. An electropolymerized electrical conductor is formed over tops of a portion of the nanorods to form a reservoir between the electropolymerized conductor and the substrate. The electropolymerized conductor includes pores that open or close responsively to electrical signals applied to the nanorods. A cell loading region is disposed in proximity of the reservoir, and the cell loading region is configured to receive stem cells. A neurotrophic dispensing material is loaded in the reservoir to be dispersed in accordance with open pores to affect growth of the stem cells when in vivo.
    Type: Application
    Filed: September 17, 2019
    Publication date: January 9, 2020
    Inventors: Steven J. Holmes, Qinghuang Lin, Emily R. Kinser, Nathan P. Marchack, Roy R. Yu
  • Publication number: 20190143095
    Abstract: A nanodevice includes an array of metal nanorods formed on a substrate. An electropolymerized electrical conductor is formed over tops of a portion of the nanorods to form a reservoir between the electropolymerized conductor and the substrate. The electropolymerized conductor includes pores that open or close responsively to electrical signals applied to the nanorods. A cell loading region is disposed in proximity of the reservoir, and the cell loading region is configured to receive stem cells. A neurotrophic dispensing material is loaded in the reservoir to be dispersed in accordance with open pores to affect growth of the stem cells when in vivo.
    Type: Application
    Filed: November 13, 2017
    Publication date: May 16, 2019
    Inventors: Steven J. Holmes, Qinghuang Lin, Emily R. Kinser, Nathan P. Marchack, Roy R. Yu
  • Publication number: 20190101504
    Abstract: Embodiments of the invention are directed to a biosensing integrated circuit (IC). A non-limiting example of the biosensing IC includes a plurality of semiconductor substrate layers. A sensor element is formed over a first one of the plurality of semiconductor substrate layers, wherein the sensor element is configured to, based at least in part on the sensor element interacting with a predetermined material, generate data representing a measurable electrical parameter. An adhesion enhancement region is configured to physically couple the sensor element to the first one of the plurality of semiconductor substrate layers. In some embodiments of the invention, the biosensing IC further includes an electrically conductive interconnect network configured to communicatively couple the data representing the measurable electrical parameter to computer elements.
    Type: Application
    Filed: November 3, 2017
    Publication date: April 4, 2019
    Inventors: Hariklia Deligianni, Bruce B. Doris, Damon B. Farmer, Steven J. Holmes, Qinghuang Lin, Nathan P. Marchack, Deborah A. Neumayer, Roy R. Yu
  • Publication number: 20190101503
    Abstract: Embodiments of the invention are directed to a biosensing integrated circuit (IC). A non-limiting example of the biosensing IC includes a plurality of semiconductor substrate layers. A sensor element is formed over a first one of the plurality of semiconductor substrate layers, wherein the sensor element is configured to, based at hleast in part on the sensor element interacting with a predetermined material, generate data representing a measureable electrical parameter. An adhesion enhancement region is configured to physically couple the sensor element to the first one of the plurality of semiconductor substrate layers. In some embodiments of the invention, the biosensing IC further includes an electrically conductive interconnect network configured to communicatively couple the data representing the measureable electrical parameter to computer elements.
    Type: Application
    Filed: September 29, 2017
    Publication date: April 4, 2019
    Inventors: Hariklia Deligianni, Bruce B. Doris, Damon B. Farmer, Steven J. Holmes, Qinghuang Lin, Nathan P. Marchack, Deborah A. Neumayer, Roy R. Yu
  • Publication number: 20190048382
    Abstract: Embodiments of the present invention are directed to a semiconductor device. A non-limiting example of the semiconductor device includes a semiconductor substrate. The semiconductor device also includes a plurality of metal nanopillars formed on the substrate. The semiconductor device also includes an amperometric sensor associated with one of the plurality of nanopillars, wherein the amperometric sensor is selective to an enzyme-active neurotransmitter. The semiconductor device also includes a resistivity sensor associated with a pair of nanopillars, wherein the resistivity sensor is selective to an analyte.
    Type: Application
    Filed: August 8, 2017
    Publication date: February 14, 2019
    Inventors: HARIKLIA DELIGIANNI, BRUCE B. DORIS, STEVEN J. HOLMES, QINGHUANG LIN, ROY R. YU
  • Publication number: 20180339154
    Abstract: A sensing and treatment device includes an array of metal nanorod electrodes formed on a substrate, the array including first electrodes for sensing, and second electrodes for electrical pulsation. A data processing system is configured to monitor a parameter using the first electrodes and to activate the electrical pulsation in the second electrodes in accordance with a reading of the parameter.
    Type: Application
    Filed: May 23, 2017
    Publication date: November 29, 2018
    Inventors: Hariklia Deligianni, Bruce B. Doris, Steven J. Holmes, Emily R. Kinser, Qinghuang Lin, Roy R. Yu
  • Publication number: 20180339321
    Abstract: A biosensor includes an array of metal nanorods formed on a substrate. An electropolymerized conductor is formed over tops of a portion of the nanorods to form a reservoir between the electropolymerized conductor and the substrate. The electropolymerized conductor includes pores that open and close responsively to electrical signals applied to the nanorods. A dispensing material is loaded in the reservoir to be dispersed in accordance with open pores.
    Type: Application
    Filed: November 13, 2017
    Publication date: November 29, 2018
    Inventors: Steven J. Holmes, Emily R. Kinser, Qinghuang Lin, Nathan P. Marchack, Roy R. Yu
  • Publication number: 20180339320
    Abstract: A biosensor includes an array of metal nanorods formed on a substrate. An electropolymerized conductor is formed over tops of a portion of the nanorods to form a reservoir between the electropolymerized conductor and the substrate. The electropolymerized conductor includes pores that open and close responsively to electrical signals applied to the nanorods. A dispensing material is loaded in the reservoir to be dispersed in accordance with open pores.
    Type: Application
    Filed: May 23, 2017
    Publication date: November 29, 2018
    Inventors: Steven J. Holmes, Emily R. Kinser, Qinghuang Lin, Nathan P. Marchack, Roy R. Yu
  • Publication number: 20180340203
    Abstract: A biosensor includes an array of electrically conductive nanorods formed on a substrate. The nanorods each includes a nanoscale porous coating formed on a surface of the nanorods from silicon dioxide layers. An enzyme coating is bound to the porous coating.
    Type: Application
    Filed: May 23, 2017
    Publication date: November 29, 2018
    Inventors: Steven J. Holmes, Emily R. Kinser, Qinghuang Lin, Nathan P. Marchack, Roy R. Yu
  • Publication number: 20180340204
    Abstract: A biosensor includes an array of electrically conductive nanorods formed on a substrate. The nanorods each includes a nanoscale porous coating formed on a surface of the nanorods from silicon dioxide layers. An enzyme coating is bound to the porous coating.
    Type: Application
    Filed: November 13, 2017
    Publication date: November 29, 2018
    Inventors: Steven J. Holmes, Emily R. Kinser, Qinghuang Lin, Nathan P. Marchack, Roy R. Yu
  • Publication number: 20180339155
    Abstract: A sensing and treatment device includes an array of metal nanorod electrodes formed on a substrate, the array including first electrodes for sensing, and second electrodes for electrical pulsation. A data processing system is configured to monitor a parameter using the first electrodes and to activate the electrical pulsation in the second electrodes in accordance with a reading of the parameter.
    Type: Application
    Filed: November 9, 2017
    Publication date: November 29, 2018
    Inventors: Hariklia Deligianni, Bruce B. Doris, Steven J. Holmes, Emily R. Kinser, Qinghuang Lin, Roy R. Yu