Patents by Inventor Steven P. Denbaars

Steven P. Denbaars has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170130910
    Abstract: A high-power, high-brightness lighting system for large venue lighting, which includes a laser diode as the excitation source and one or more phosphor materials placed at a remote distance from the laser source. The invention offers a lighting system with the advantages of high brightness, high efficiency, high luminous efficacy, long lifetimes, quick turn-on times, suitable color properties, environmental sustainability, and easy maintenance, which may allow for smart and flexible control over large area lighting systems with resulting savings in operating and maintenance costs.
    Type: Application
    Filed: January 23, 2017
    Publication date: May 11, 2017
    Applicant: The Regents of the University of California
    Inventors: Kristin A. Denault, Steven P. DenBaars, Ram Seshadri
  • Patent number: 9640947
    Abstract: A III-Nitride based Vertical Cavity Surface Emitting Laser (VCSEL), wherein a cavity length of the VCSEL is controlled by etching.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: May 2, 2017
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Casey O. Holder, Daniel F. Feezell, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Patent number: 9611987
    Abstract: A white light source employing a III-nitride based laser diode pumping one or more phosphors. The III-nitride laser diode emits light in a first wavelength range that is down-converted to light in a second wavelength range by the phosphors, wherein the light in the first wavelength range is combined with the light in the second wavelength range to create highly directional white light. The light in the first wavelength range comprises ultraviolet, violet, blue and/or green light, while the light in the second wavelength range comprises green, yellow and/or red light.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: April 4, 2017
    Assignee: The Regents of the University of California
    Inventors: Kathryn M. Kelchner, James S. Speck, Nathan A. Pfaff, Steven P. DenBaars
  • Publication number: 20170077356
    Abstract: A method for fabricating a Zinc Oxide (ZnO) conductive film on a semiconductor material, including depositing a doped ZnO seed layer on a diode, wherein the ZnO seed layer forms an electrical contact to the diode; and depositing a ZnO layer on the ZnO seed layer, wherein the ZnO seed layer and the ZnO layer each have a thickness, a crystal quality, and a doping level such that (1) the diode comprising III-nitride material is turned on with a turn on voltage of 2.75 volts or less applied across the ZnO layers and the diode, and (2) a contact resistance, of a structure comprising the ZnO layers and the diode, is lower as compared to a contact resistance of a structure comprising the ZnO layer directly on the diode without the ZnO seed layer.
    Type: Application
    Filed: September 15, 2016
    Publication date: March 16, 2017
    Applicant: The Regents of the University of California
    Inventors: Asad J. Mughal, Sang Ho Oh, Steven P. DenBaars
  • Patent number: 9574728
    Abstract: A high-power, high-brightness lighting system for large venue lighting, which includes a laser diode as the excitation source and one or more phosphor materials placed at a remote distance from the laser source. The invention offers a lighting system with the advantages of high brightness, high efficiency, high luminous efficacy, long lifetimes, quick turn-on times, suitable color properties, environmental sustainability, and easy maintenance, which may allow for smart and flexible control over large area lighting systems with resulting savings in operating and maintenance costs.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: February 21, 2017
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Kristin A. Denault, Steven P. DenBaars, Ram Seshadri
  • Patent number: 9515240
    Abstract: A method for increasing the luminous efficacy of a white light emitting diode (WLED), comprising introducing optically functional interfaces between an LED die and a phosphor, and between the phosphor and an outer medium, wherein at least one of the interfaces between the phosphor and the LED die provides a reflectance for light emitted by the phosphor away from the outer medium and a transmittance for light emitted by the LED die. Thus, a WLED may comprise a first material which surrounds an LED die, a phosphor layer, and at least one additional layer or material which is transparent for direct LED emission and reflective for the phosphor emission, placed between the phosphor layer and the first material which surrounds the LED die.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: December 6, 2016
    Assignee: The Regents of the University of California
    Inventors: Frederic S. Diana, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20160307801
    Abstract: A method for the reuse of gallium nitride (GaN) epitaxial substrates uses band-gap-selective photoelectrochemical (PEC) etching to remove one or more epitaxial layers from bulk or free-standing GaN substrates without damaging the substrate, allowing the substrate to be reused for further growth of additional epitaxial layers. The method facilitates a significant cost reduction in device production by permitting the reuse of expensive bulk or free-standing GaN substrates.
    Type: Application
    Filed: June 22, 2016
    Publication date: October 20, 2016
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Casey O. Holder, Daniel F. Feezell, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20160230312
    Abstract: A nonpolar III-nitride film grown on a miscut angle of a substrate, in order to suppress the surface undulations, is provided. The surface morphology of the film is improved with a miscut angle towards an ?-axis direction comprising a 0.15° or greater miscut angle towards the ?-axis direction and a less than 30° miscut angle towards the ?-axis direction.
    Type: Application
    Filed: April 20, 2016
    Publication date: August 11, 2016
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Asako Hirai, Zhongyuan Jia, Makoto Saito, Hisashi Yamada, Kenji Iso, Steven P. DenBaars, Shuji Nakamura, James S. Speck
  • Patent number: 9396943
    Abstract: A method for the reuse of gallium nitride (GaN) epitaxial substrates uses band-gap-selective photoelectrochemical (PEC) etching to remove one or more epitaxial layers from bulk or free-standing GaN substrates without damaging the substrate, allowing the substrate to be reused for further growth of additional epitaxial layers. The method facilitates a significant cost reduction in device production by permitting the reuse of expensive bulk or free-standing GaN substrates.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: July 19, 2016
    Assignee: The Regents of the University of California
    Inventors: Casey O. Holder, Daniel F. Feezell, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20160156155
    Abstract: A III-Nitride based Vertical Cavity Surface Emitting Laser (VCSEL), wherein a cavity length of the VCSEL is controlled by etching.
    Type: Application
    Filed: August 6, 2015
    Publication date: June 2, 2016
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Casey O. Holder, Daniel F. Feezell, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Patent number: 9356431
    Abstract: A high power blue-violet Ill-nitride semipolar laser diode (LD) with an output power in excess of 1 W, a slope efficiency of more than 1 W/A, and an external quantum efficiency (EQE) in excess of 25% and more preferably, in excess of 35%. These operating characteristics make these laser diodes suitable for use in solid state lighting systems.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: May 31, 2016
    Assignee: The Regents of the University of California
    Inventors: Arash Pourhashemi, Robert M. Farrell, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Patent number: 9340899
    Abstract: A nonpolar III-nitride film grown on a miscut angle of a substrate, in order to suppress the surface undulations, is provided. The surface morphology of the film is improved with a miscut angle towards an a-axis direction comprising a 0.15° or greater miscut angle towards the a-axis direction and a less than 30° miscut angle towards the a-axis direction.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: May 17, 2016
    Assignee: The Regents of the University of California
    Inventors: Asako Hirai, Zhongyuan Jia, Makoto Saito, Hisashi Yamada, Kenji Iso, Steven P. DenBaars, Shuji Nakamura, James S. Speck
  • Publication number: 20160133790
    Abstract: This invention is related to LED Light Extraction for optoelectronic applications. More particularly the invention relates to (Al, Ga, In)N combined with optimized optics and phosphor layer for highly efficient (Al, Ga, In)N based light emitting diodes applications, and its fabrication method. A further extension is the general combination of a shaped high refractive index light extraction material combined with a shaped optical element.
    Type: Application
    Filed: December 23, 2015
    Publication date: May 12, 2016
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Natalie Fellows DeMille, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20160079738
    Abstract: A method for growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices, comprising identifying desired material properties for a particular device application, selecting a semipolar growth orientation based on the desired material properties, selecting a suitable substrate for growth of the selected semipolar growth orientation, growing a planar semipolar (Ga,Al,In,B)N template or nucleation layer on the substrate, and growing the semipolar (Ga,Al,In,B)N thin films, heterostructures or devices on the planar semipolar (Ga,Al,In,B)N template or nucleation layer. The method results in a large area of the semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices being parallel to the substrate surface.
    Type: Application
    Filed: November 30, 2015
    Publication date: March 17, 2016
    Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, Japan Science and Technology Agency
    Inventors: Robert M. Farrell, Troy J. Baker, Arpan Chakraborty, Benjamin A. Haskell, P. Morgan Pattison, Rajat Sharma, Umesh K. Mishra, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Publication number: 20160079499
    Abstract: A method for increasing the luminous efficacy of a white light emitting diode (WLED), comprising introducing optically functional interfaces between an LED die and a phosphor, and between the phosphor and an outer medium, wherein at least one of the interfaces between the phosphor and the LED die provides a reflectance for light emitted by the phosphor away from the outer medium and a transmittance for light emitted by the LED die. Thus, a WLED may comprise a first material which surrounds an LED die, a phosphor layer, and at least one additional layer or material which is transparent for direct LED emission and reflective for the phosphor emission, placed between the phosphor layer and the first material which surrounds the LED die.
    Type: Application
    Filed: November 20, 2015
    Publication date: March 17, 2016
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Frederic S. Diana, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20160043278
    Abstract: A method of fabricating non-polar a-plane GaN/(Al,B,In,Ga)N multiple quantum wells (MQWs). The a-plane MQWs are grown on the appropriate GaN/sapphire template layers via metalorganic chemical vapor deposition (MOCVD) with well widths ranging from 20 ? to 70 ?. The room temperature photoluminescence (PL) emission energy from the a-plane MQWs followed a square well trend modeled using self-consistent Poisson-Schrodinger (SCPS) calculations. Optimal PL emission intensity is obtained at a quantum well width of 52 ? for the a-plane MQWs.
    Type: Application
    Filed: October 23, 2015
    Publication date: February 11, 2016
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Michael D. Craven, Steven P. DenBaars
  • Patent number: 9250044
    Abstract: Laser dazzler devices and methods of using laser dazzler devices are disclosed. More specifically, embodiments of the present invention provide laser dazzling devices power by one or more green laser diodes characterized by a wavelength of about 500 nm to 540 nm. In various embodiments, laser dazzling devices according to the present invention include non-polar and/or semi-polar green laser diodes. In a specific embodiment, a laser dazzling device includes a plurality of green laser diodes.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: February 2, 2016
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, Paul Rudy, Vinod Khosla, Pierre Lamond, Steven P. Denbaars, Shuji Nakamura, Richard T. Ogawa
  • Patent number: 9240529
    Abstract: This invention is related to LED Light Extraction for optoelectronic applications. More particularly the invention relates to (Al, Ga, In)N combined with optimized optics and phosphor layer for highly efficient (Al, Ga, In)N based light emitting diodes applications, and its fabrication method. A further extension is the general combination of a shaped high refractive index light extraction material combined with a shaped optical element.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: January 19, 2016
    Assignee: The Regents of the University of California
    Inventors: Natalie Fellows DeMille, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 9231376
    Abstract: A method for growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices, comprising identifying desired material properties for a particular device application, selecting a semipolar growth orientation based on the desired material properties, selecting a suitable substrate for growth of the selected semipolar growth orientation, growing a planar semipolar (Ga,Al,In,B)N template or nucleation layer on the substrate, and growing the semipolar (Ga,Al,In,B)N thin films, heterostructures or devices on the planar semipolar (Ga,Al,In,B)N template or nucleation layer. The method results in a large area of the semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices being parallel to the substrate surface.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: January 5, 2016
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: Robert M. Farrell, Jr., Troy J. Baker, Arpan Chakraborty, Benjamin A. Haskell, P. Morgan Pattison, Rajat Sharma, Umesh K. Mishra, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Publication number: 20150372456
    Abstract: A high power blue-violet Ill-nitride semi-polar laser diode (LD) with an output power in excess of 1 W, a slope efficiency of more than 1 W/A, and an external quantum efficiency (EQE) in excess of 25% and more preferably, in excess of 35%. These operating characteristics make these laser diodes suitable for use in solid state lighting systems.
    Type: Application
    Filed: February 13, 2014
    Publication date: December 24, 2015
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Arash Pourhashemi, Robert M. Farrell, Steven P. DenBaars, James S. Speck, Shuji Nakamura