Patents by Inventor Steven P. Denbaars

Steven P. Denbaars has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160133790
    Abstract: This invention is related to LED Light Extraction for optoelectronic applications. More particularly the invention relates to (Al, Ga, In)N combined with optimized optics and phosphor layer for highly efficient (Al, Ga, In)N based light emitting diodes applications, and its fabrication method. A further extension is the general combination of a shaped high refractive index light extraction material combined with a shaped optical element.
    Type: Application
    Filed: December 23, 2015
    Publication date: May 12, 2016
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Natalie Fellows DeMille, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20160079738
    Abstract: A method for growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices, comprising identifying desired material properties for a particular device application, selecting a semipolar growth orientation based on the desired material properties, selecting a suitable substrate for growth of the selected semipolar growth orientation, growing a planar semipolar (Ga,Al,In,B)N template or nucleation layer on the substrate, and growing the semipolar (Ga,Al,In,B)N thin films, heterostructures or devices on the planar semipolar (Ga,Al,In,B)N template or nucleation layer. The method results in a large area of the semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices being parallel to the substrate surface.
    Type: Application
    Filed: November 30, 2015
    Publication date: March 17, 2016
    Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, Japan Science and Technology Agency
    Inventors: Robert M. Farrell, Troy J. Baker, Arpan Chakraborty, Benjamin A. Haskell, P. Morgan Pattison, Rajat Sharma, Umesh K. Mishra, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Publication number: 20160079499
    Abstract: A method for increasing the luminous efficacy of a white light emitting diode (WLED), comprising introducing optically functional interfaces between an LED die and a phosphor, and between the phosphor and an outer medium, wherein at least one of the interfaces between the phosphor and the LED die provides a reflectance for light emitted by the phosphor away from the outer medium and a transmittance for light emitted by the LED die. Thus, a WLED may comprise a first material which surrounds an LED die, a phosphor layer, and at least one additional layer or material which is transparent for direct LED emission and reflective for the phosphor emission, placed between the phosphor layer and the first material which surrounds the LED die.
    Type: Application
    Filed: November 20, 2015
    Publication date: March 17, 2016
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Frederic S. Diana, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20160043278
    Abstract: A method of fabricating non-polar a-plane GaN/(Al,B,In,Ga)N multiple quantum wells (MQWs). The a-plane MQWs are grown on the appropriate GaN/sapphire template layers via metalorganic chemical vapor deposition (MOCVD) with well widths ranging from 20 ? to 70 ?. The room temperature photoluminescence (PL) emission energy from the a-plane MQWs followed a square well trend modeled using self-consistent Poisson-Schrodinger (SCPS) calculations. Optimal PL emission intensity is obtained at a quantum well width of 52 ? for the a-plane MQWs.
    Type: Application
    Filed: October 23, 2015
    Publication date: February 11, 2016
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Michael D. Craven, Steven P. DenBaars
  • Patent number: 9250044
    Abstract: Laser dazzler devices and methods of using laser dazzler devices are disclosed. More specifically, embodiments of the present invention provide laser dazzling devices power by one or more green laser diodes characterized by a wavelength of about 500 nm to 540 nm. In various embodiments, laser dazzling devices according to the present invention include non-polar and/or semi-polar green laser diodes. In a specific embodiment, a laser dazzling device includes a plurality of green laser diodes.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: February 2, 2016
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, Paul Rudy, Vinod Khosla, Pierre Lamond, Steven P. Denbaars, Shuji Nakamura, Richard T. Ogawa
  • Patent number: 9240529
    Abstract: This invention is related to LED Light Extraction for optoelectronic applications. More particularly the invention relates to (Al, Ga, In)N combined with optimized optics and phosphor layer for highly efficient (Al, Ga, In)N based light emitting diodes applications, and its fabrication method. A further extension is the general combination of a shaped high refractive index light extraction material combined with a shaped optical element.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: January 19, 2016
    Assignee: The Regents of the University of California
    Inventors: Natalie Fellows DeMille, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 9231376
    Abstract: A method for growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices, comprising identifying desired material properties for a particular device application, selecting a semipolar growth orientation based on the desired material properties, selecting a suitable substrate for growth of the selected semipolar growth orientation, growing a planar semipolar (Ga,Al,In,B)N template or nucleation layer on the substrate, and growing the semipolar (Ga,Al,In,B)N thin films, heterostructures or devices on the planar semipolar (Ga,Al,In,B)N template or nucleation layer. The method results in a large area of the semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices being parallel to the substrate surface.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: January 5, 2016
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: Robert M. Farrell, Jr., Troy J. Baker, Arpan Chakraborty, Benjamin A. Haskell, P. Morgan Pattison, Rajat Sharma, Umesh K. Mishra, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Publication number: 20150371849
    Abstract: A method for the reuse of gallium nitride (GaN) epitaxial substrates uses band-gap-selective photoelectrochemical (PEC) etching to remove one or more epitaxial layers from bulk or free-standing GaN substrates without damaging the substrate, allowing the substrate to be reused for further growth of additional epitaxial layers. The method facilitates a significant cost reduction in device production by permitting the reuse of expensive bulk or free-standing GaN substrates.
    Type: Application
    Filed: August 28, 2015
    Publication date: December 24, 2015
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Casey O. Holder, Daniel F. Feezell, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20150372456
    Abstract: A high power blue-violet Ill-nitride semi-polar laser diode (LD) with an output power in excess of 1 W, a slope efficiency of more than 1 W/A, and an external quantum efficiency (EQE) in excess of 25% and more preferably, in excess of 35%. These operating characteristics make these laser diodes suitable for use in solid state lighting systems.
    Type: Application
    Filed: February 13, 2014
    Publication date: December 24, 2015
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Arash Pourhashemi, Robert M. Farrell, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Patent number: 9219205
    Abstract: A method for increasing the luminous efficacy of a white light emitting diode (WLED), comprising introducing optically functional interfaces between an LED die and a phosphor, and between the phosphor and an outer medium, wherein at least one of the interfaces between the phosphor and the LED die provides a reflectance for light emitted by the phosphor away from the outer medium and a transmittance for light emitted by the LED die. Thus, a WLED may comprise a first material which surrounds an LED die, a phosphor layer, and at least one additional layer or material which is transparent for direct LED emission and reflective for the phosphor emission, placed between the phosphor layer and the first material which surrounds the LED die.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: December 22, 2015
    Assignee: The Regents of the University of California
    Inventors: Frederic S. Diana, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 9159553
    Abstract: A dislocation-free high quality template with relaxed lattice constant, fabricated by spatially restricting misfit dislocation(s) around heterointerfaces. This can be used as a template layer for high In composition devices. Specifically, the present invention prepares high quality InGaN templates (In composition is around 5-10%), and can grow much higher In-composition InGaN quantum wells (QWs) (or multi quantum wells (MQWs)) on these templates than would otherwise be possible.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: October 13, 2015
    Assignee: The Regents of the University of California
    Inventors: Hiroaki Ohta, Feng Wu, Anurag Tyagi, Arpan Chakraborty, James S. Speck, Steven P. DenBaars, Shuji Nakamura, Erin C. Young
  • Patent number: 9147733
    Abstract: A method for the reuse of gallium nitride (GaN) epitaxial substrates uses band-gap-selective photoelectrochemical (PEC) etching to remove one or more epitaxial layers from bulk or free-standing GaN substrates without damaging the substrate, allowing the substrate to be reused for further growth of additional epitaxial layers. The method facilitates a significant cost reduction in device production by permitting the reuse of expensive bulk or free-standing GaN substrates.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: September 29, 2015
    Assignee: The Regents of the University of California
    Inventors: Casey O. Holder, Daniel F. Feezell, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 9136673
    Abstract: A III-Nitride based Vertical Cavity Surface Emitting Laser (VCSEL), wherein a cavity length of the VCSEL is controlled by etching.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: September 15, 2015
    Assignee: The Regents of the University of California
    Inventors: Casey O. Holder, Daniel F. Feezell, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Publication number: 20150255959
    Abstract: An optoelectronic device grown on a miscut of GaN, wherein the miscut comprises a semi-polar GaN crystal plane (of the GaN) miscut x degrees from an m-plane of the GaN and in a c-direction of the GaN, where ?15<x<?1 and 1<x<15 degrees.
    Type: Application
    Filed: May 26, 2015
    Publication date: September 10, 2015
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Po Shan Hsu, Kathryn M. Kelchner, Robert M. Farrell, Daniel A. Haeger, Hiroaki Ohta, Anurag Tyagi, Shuji Nakamura, Steven P. DenBaars, James S. Speck
  • Patent number: 9130119
    Abstract: An (Al, Ga, In)N light emitting device, such as a light emitting diode (LED), in which high light generation efficiency is realized by fabricating the device on non-polar or semi-polar III-Nitride crystal geometries. Because non-polar and semi-polar emitting devices have significantly lower piezoelectric effects than c-plane emitting devices, higher efficiency emitting devices at higher current densities can be realized.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: September 8, 2015
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: Steven P. DenBaars, Mathew C. Schmidt, Kwang Choong Kim, James S. Speck, Shuji Nakamura
  • Publication number: 20150226386
    Abstract: An efficient and stable, high-power, laser-driven white light source using one or more phosphors deposited on a thermally conductive substrate that is either transparent or reflective and placed at a remote distance from the laser source. The present invention relates generally to a high-power, laser-driven, white light source using one or more phosphors.
    Type: Application
    Filed: August 30, 2013
    Publication date: August 13, 2015
    Applicant: The Regents of the University of California
    Inventors: Ram Seshadri, Steven P. DenBaars, Kristin A. Denault, Michael Cantore
  • Patent number: 9076927
    Abstract: A method of fabricating a heterostructure device, including (a) obtaining a first layer or substrate; (b) growing a second layer on the first layer or substrate; and (c) forming the second layer that is at least partially relaxed wherein (1) the first layer and the second layer have the same lattice structure but different lattice constants, (2) the first layer and the second layer form a heterojunction, and (3) the heterojunction forms an active area of a device or serves as a pseudo-substrate for the device.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: July 7, 2015
    Assignee: The Regents of the University of California
    Inventors: Stacia Keller, Carl J. Neufeld, Umesh K. Mishra, Steven P. DenBaars
  • Patent number: 9077151
    Abstract: An optoelectronic device grown on a miscut of GaN, wherein the miscut comprises a semi-polar GaN crystal plane (of the GaN) miscut x degrees from an m-plane of the GaN and in a c-direction of the GaN, where ?15<x<?1 and 1<x<15 degrees.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: July 7, 2015
    Assignee: The Regents of the University of California
    Inventors: Po Shan Hsu, Kathryn M. Kelchner, Robert M. Farrell, Daniel A. Haeger, Hiroaki Ohta, Anurag Tyagi, Shuji Nakamura, Steven P. DenBaars, S. James Speck
  • Patent number: 9054498
    Abstract: A method of fabricating an (Al,Ga,In)N laser diode, comprising depositing one or more III-N layers upon a growth substrate at a first temperature, depositing an indium containing laser core at a second temperature upon layers deposited at a first temperature, and performing all subsequent fabrication steps under conditions that inhibit degradation of the laser core, wherein the conditions are a substantially lower temperature than the second temperature.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: June 9, 2015
    Assignee: The Regents of the University of California
    Inventors: Daniel A. Cohen, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 9040326
    Abstract: A III-nitride light emitting diode (LED) and method of fabricating the same, wherein at least one surface of a semipolar or nonpolar plane of a III-nitride layer of the LED is textured, thereby forming a textured surface in order to increase light extraction. The texturing may be performed by plasma assisted chemical etching, photolithography followed by etching, or nano-imprinting followed by etching.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: May 26, 2015
    Assignee: The Regents of the University of California
    Inventors: Hong Zhong, Anurag Tyagi, Kenneth J. Vampola, James S. Speck, Steven P. DenBaars, Shuji Nakamura