Patents by Inventor Sudha Rathi

Sudha Rathi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200058539
    Abstract: Embodiments described herein relate to coating materials with high resistivity for use in processing chambers. To counteract the high charges near the top surface of the thermal conductive support, the top surface of the thermal conductive support can be coated with a high resistivity layer. The high resistivity of the layer reduces the amount of charge at the top surface of the thermally conductive element, greatly reducing or preventing arcing incidents along with reducing electrostatic chucking degradation. The high resistivity layer can also be applied to other chamber components. Embodiments described herein also relate to methods for fabricating a chamber component for use in a processing environment. The component can be fabricated by forming a body of a chamber component, optionally ex-situ seasoning the body, installing the chamber component into a processing chamber, in-situ seasoning the chamber component, and performing a deposition process in the processing chamber.
    Type: Application
    Filed: July 23, 2019
    Publication date: February 20, 2020
    Inventors: Sudha RATHI, Dong Hyung LEE, Abdul Aziz KHAJA, Ganesh BALASUBRAMANIAN, Juan Carlos ROCHA
  • Patent number: 10510518
    Abstract: Embodiments of the invention generally relate to methods of dry stripping boron-carbon films. In one embodiment, alternating plasmas of hydrogen and oxygen are used to remove a boron-carbon film. In another embodiment, co-flowed oxygen and hydrogen plasma is used to remove a boron-carbon containing film. A nitrous oxide plasma may be used in addition to or as an alternative to either of the above oxygen plasmas. In another embodiment, a plasma generated from water vapor is used to remove a boron-carbon film. The boron-carbon removal processes may also include an optional polymer removal process prior to removal of the boron-carbon films. The polymer removal process includes exposing the boron-carbon film to NF3 to remove from the surface of the boron-carbon film any carbon-based polymers generated during a substrate etching process.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: December 17, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kwangduk Douglas Lee, Sudha Rathi, Ramprakash Sankarakrishnan, Martin Jay Seamons, Irfan Jamil, Bok Hoen Kim
  • Patent number: 10373822
    Abstract: Methods for modulating local stress and overlay error of one or more patterning films may include modulating a gas flow profile of gases introduced into a chamber body, flowing gases within the chamber body toward a substrate, rotating the substrate, and unifying a center-to-edge temperature profile of the substrate by controlling the substrate temperature with a dual zone heater. A chamber for depositing a film may include a chamber body comprising one or more processing regions. The chamber body may include a gas distribution assembly having a blocker plate for delivering gases into the one or more processing regions. The blocker plate may have a first region and a second region, and the first region and second region each may have a plurality of holes. The chamber body may have a dual zone heater.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: August 6, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Prashant Kumar Kulshreshtha, Sudha Rathi, Praket P. Jha, Saptarshi Basu, Kwangduk Douglas Lee, Martin J. Seamons, Bok Hoen Kim, Ganesh Balasubramanian, Ziqing Duan, Lei Jing, Mandar B. Pandit
  • Publication number: 20180096843
    Abstract: Methods for modulating local stress and overlay error of one or more patterning films may include modulating a gas flow profile of gases introduced into a chamber body, flowing gases within the chamber body toward a substrate, rotating the substrate, and unifying a center-to-edge temperature profile of the substrate by controlling the substrate temperature with a dual zone heater. A chamber for depositing a film may include a chamber body comprising one or more processing regions. The chamber body may include a gas distribution assembly having a blocker plate for delivering gases into the one or more processing regions. The blocker plate may have a first region and a second region, and the first region and second region each may have a plurality of holes. The chamber body may have a dual zone heater.
    Type: Application
    Filed: November 17, 2017
    Publication date: April 5, 2018
    Inventors: Prashant Kumar Kulshreshtha, Sudha Rathi, Praket P. Jha, Saptarshi Basu, Kwangduk Douglas Lee, Martin J. Seamons, Bok Hoen Kim, Ganesh Balasubramanian, Ziqing Duan, Lei Jing, Mandar B. Pandit
  • Patent number: 9837265
    Abstract: Methods for modulating local stress and overlay error of one or more patterning films may include modulating a gas flow profile of gases introduced into a chamber body, flowing gases within the chamber body toward a substrate, rotating the substrate, and unifying a center-to-edge temperature profile of the substrate by controlling the substrate temperature with a dual zone heater. A chamber for depositing a film may include a chamber body comprising one or more processing regions. The chamber body may include a gas distribution assembly having a blocker plate for delivering gases into the one or more processing regions. The blocker plate may have a first region and a second region, and the first region and second region each may have a plurality of holes. The chamber body may have a dual zone heater.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: December 5, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Prashant Kumar Kulshreshtha, Sudha Rathi, Praket P. Jha, Saptarshi Basu, Kwangduk Douglas Lee, Martin J. Seamons, Bok Hoen Kim, Ganesh Balasubramanian, Ziqing Duan, Lei Jing, Mandar B. Pandit
  • Patent number: 9653327
    Abstract: Embodiments of the invention generally relate to methods of removing and/or cleaning a substrate surface having different material layers disposed thereon using water vapor plasma treatment. In one embodiment, a method for cleaning a surface of a substrate includes positioning a substrate into a processing chamber, the substrate having a dielectric layer disposed thereon forming openings on the substrate, exposing the dielectric layer disposed on the substrate to water vapor supplied into the chamber to form a plasma in the water vapor, maintaining a process pressure in the chamber at between about 1 Torr and about 120 Torr, and cleaning the contact structure formed on the substrate.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: May 16, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kwangduk Douglas Lee, Sudha Rathi, Chiu Chan, Martin J. Seamons, Bok Heon Kim
  • Publication number: 20160307752
    Abstract: Methods for modulating local stress and overlay error of one or more patterning films may include modulating a gas flow profile of gases introduced into a chamber body, flowing gases within the chamber body toward a substrate, rotating the substrate, and unifying a center-to-edge temperature profile of the substrate by controlling the substrate temperature with a dual zone heater. A chamber for depositing a film may include a chamber body comprising one or more processing regions. The chamber body may include a gas distribution assembly having a blocker plate for delivering gases into the one or more processing regions. The blocker plate may have a first region and a second region, and the first region and second region each may have a plurality of holes. The chamber body may have a dual zone heater.
    Type: Application
    Filed: June 24, 2016
    Publication date: October 20, 2016
    Inventors: Prashant Kumar KULSHRESHTHA, Sudha RATHI, Praket P. JHA, Saptarshi BASU, Kwangduk Douglas LEE, Martin J. SEAMONS, Bok Hoen KIM, Ganesh BALASUBRAMANIAN, Ziqing DUAN, Lei JING, Mandar B. PANDIT
  • Patent number: 9390910
    Abstract: Methods for modulating local stress and overlay error of one or more patterning films may include modulating a gas flow profile of gases introduced into a chamber body, flowing gases within the chamber body toward a substrate, rotating the substrate, and unifying a center-to-edge temperature profile of the substrate by controlling the substrate temperature with a dual zone heater. A chamber for depositing a film may include a chamber body comprising one or more processing regions. The chamber body may include a gas distribution assembly having a blocker plate for delivering gases into the one or more processing regions. The blocker plate may have a first region and a second region, and the first region and second region each may have a plurality of holes. The chamber body may have a dual zone heater.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: July 12, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Prashant Kumar Kulshreshtha, Sudha Rathi, Praket P. Jha, Saptarshi Basu, Kwangduk Douglas Lee, Martin J. Seamons, Bok Hoen Kim, Ganesh Balasubramanian, Ziqing Duan, Lei Jing, Mandar B. Pandit
  • Publication number: 20160133443
    Abstract: Embodiments of the invention generally relate to methods of dry stripping boron-carbon films. In one embodiment, alternating plasmas of hydrogen and oxygen are used to remove a boron-carbon film. In another embodiment, co-flowed oxygen and hydrogen plasma is used to remove a boron-carbon containing film. A nitrous oxide plasma may be used in addition to or as an alternative to either of the above oxygen plasmas. In another embodiment, a plasma generated from water vapor is used to remove a boron-carbon film. The boron-carbon removal processes may also include an optional polymer removal process prior to removal of the boron-carbon films. The polymer removal process includes exposing the boron-carbon film to NF3 to remove from the surface of the boron-carbon film any carbon-based polymers generated during a substrate etching process.
    Type: Application
    Filed: January 19, 2016
    Publication date: May 12, 2016
    Inventors: Kwangduk Douglas LEE, Sudha RATHI, Ramprakash SANKARAKRISHNAN, Martin Jay SEAMONS, Irfan JAMIL, Bok Hoen KIM
  • Patent number: 9337072
    Abstract: The present invention generally provides methods and apparatus for monitoring and maintaining flatness of a substrate in a plasma reactor. Certain embodiments of the present invention provide a method for processing a substrate comprising positioning the substrate on an electrostatic chuck, applying an RF power between the an electrode in the electrostatic chuck and a counter electrode positioned parallel to the electrostatic chuck, applying a DC bias to the electrode in the electrostatic chuck to clamp the substrate on the electrostatic chuck, and measuring an imaginary impedance of the electrostatic chuck.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: May 10, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Ganesh Balasubramanian, Amit Bansal, Eller Y. Juco, Mohamad Ayoub, Hyung-Joon Kim, Karthik Janakiraman, Sudha Rathi, Deenesh Padhi, Martin Jay Seamons, Visweswaren Sivaramakrishnan, Bok Hoen Kim, Amir Al-Bayati, Derek R. Witty, Hichem M'Saad, Anton Baryshnikov, Chiu Chan, Shuang Liu
  • Publication number: 20160099147
    Abstract: Methods for modulating local stress and overlay error of one or more patterning films may include modulating a gas flow profile of gases introduced into a chamber body, flowing gases within the chamber body toward a substrate, rotating the substrate, and unifying a center-to-edge temperature profile of the substrate by controlling the substrate temperature with a dual zone heater. A chamber for depositing a film may include a chamber body comprising one or more processing regions. The chamber body may include a gas distribution assembly having a blocker plate for delivering gases into the one or more processing regions. The blocker plate may have a first region and a second region, and the first region and second region each may have a plurality of holes. The chamber body may have a dual zone heater.
    Type: Application
    Filed: November 20, 2014
    Publication date: April 7, 2016
    Inventors: Prashant Kumar KULSHRESHTHA, Sudha RATHI, Praket P. JHA, Saptarshi BASU, Kwangduk Douglas LEE, Martin J. SEAMONS, Bok Hoen KIM, Ganesh BALASUBRAMANIAN, Ziqing DUAN, Lei JING, Mandar B. PANDIT
  • Patent number: 9299581
    Abstract: Embodiments of the invention generally relate to methods of dry stripping boron-carbon films. In one embodiment, alternating plasmas of hydrogen and oxygen are used to remove a boron-carbon film. In another embodiment, co-flowed oxygen and hydrogen plasma is used to remove a boron-carbon containing film. A nitrous oxide plasma may be used in addition to or as an alternative to either of the above oxygen plasmas. In another embodiment, a plasma generated from water vapor is used to remove a boron-carbon film. The boron-carbon removal processes may also include an optional polymer removal process prior to removal of the boron-carbon films. The polymer removal process includes exposing the boron-carbon film to NF3 to remove from the surface of the boron-carbon film any carbon-based polymers generated during a substrate etching process.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: March 29, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Kwangduk Douglas Lee, Sudha Rathi, Ramprakash Sankarakrishnan, Martin Jay Seamons, Irfan Jamil, Bok Hoen Kim
  • Publication number: 20160064209
    Abstract: Embodiments of the invention generally relate to methods of dry stripping boron-carbon films. In one embodiment, alternating plasmas of hydrogen and oxygen are used to remove a boron-carbon film. In another embodiment, co-flowed oxygen and hydrogen plasma is used to remove a boron-carbon containing film. A nitrous oxide plasma may be used in addition to or as an alternative to either of the above oxygen plasmas. In another embodiment, a plasma generated from water vapor is used to remove a boron-carbon film. The boron-carbon removal processes may also include an optional polymer removal process prior to removal of the boron-carbon films. The polymer removal process includes exposing the boron-carbon film to NF3 to remove from the surface of the boron-carbon film any carbon-based polymers generated during a substrate etching process.
    Type: Application
    Filed: November 6, 2015
    Publication date: March 3, 2016
    Inventors: Kwangduk Douglas LEE, Sudha RATHI, Ramprakash SANKARAKRISHNAN, Martin Jay SEAMONS, Irfan JAMIL, Bok Hoen KIM
  • Patent number: 8993454
    Abstract: Embodiments of the present invention generally relate to the fabrication of integrated circuits and particularly to the deposition of a boron containing amorphous carbon layer on a semiconductor substrate. In one embodiment, a boron-containing amorphous carbon film is disclosed. The boron-containing amorphous carbon film comprises from about 10 to 60 atomic percentage of boron, from about 20 to about 50 atomic percentage of carbon, and from about 10 to about 30 atomic percentage of hydrogen.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: March 31, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Martin Jay Seamons, Sudha Rathi, Kwangduk Douglas Lee, Deenesh Padhi, Bok Hoen Kim, Chiu Chan
  • Publication number: 20140216498
    Abstract: Embodiments of the invention generally relate to methods of dry stripping boron-carbon films. In one embodiment, alternating plasmas of hydrogen and oxygen are used to remove a boron-carbon film. In another embodiment, co-flowed oxygen and hydrogen plasma is used to remove a boron-carbon containing film. A nitrous oxide plasma may be used in addition to or as an alternative to either of the above oxygen plasmas. In another embodiment, a plasma generated from water vapor is used to remove a boron-carbon film. The boron-carbon removal processes may also include an optional polymer removal process prior to removal of the boron-carbon films. The polymer removal process includes exposing the boron-carbon film to NF3 to remove from the surface of the boron-carbon film any carbon-based polymers generated during a substrate etching process.
    Type: Application
    Filed: February 6, 2013
    Publication date: August 7, 2014
    Inventors: Kwangduk Douglas LEE, Sudha RATHI, Ramprakash SANKARAKRISHNAN, Martin Jay SEAMONS, Irfan JAMIL, Bok Hoen KIM
  • Publication number: 20140017897
    Abstract: Embodiments of the present invention generally relate to the fabrication of integrated circuits and particularly to the deposition of a boron containing amorphous carbon layer on a semiconductor substrate. In one embodiment, a boron-containing amorphous carbon film is disclosed. The boron-containing amorphous carbon film comprises from about 10 to 60 atomic percentage of boron, from about 20 to about 50 atomic percentage of carbon, and from about 10 to about 30 atomic percentage of hydrogen.
    Type: Application
    Filed: September 16, 2013
    Publication date: January 16, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Martin Jay SEAMONS, Sudha RATHI, Kwangduk Douglas LEE, Deenesh PADHI, Bok Hoen KIM, Chiu CHAN
  • Publication number: 20130284090
    Abstract: Methods and apparatus for depositing uniform boron-containing films are disclosed. A first precursor is delivered to a chamber through a first pathway having a first flow controller and a composition sensor. A second precursor is delivered by a second pathway, including a second flow controller, to a mixing point fluidly coupling the first and second pathways. A controller is coupled to the vibration sensor and the first and second flow controllers. The first precursor may be a mixture of diborane and a diluent gas, and the second precursor is typically a diluent gas. The flow rate of the first precursor may be set by determining a concentration of diborane in the first precursor from the composition sensor reading, and setting the flow rate to maintain a desired flow rate of diborane. The flow rate of the second precursor may be set to maintain a desired flow to the chamber.
    Type: Application
    Filed: April 17, 2013
    Publication date: October 31, 2013
    Inventors: Ganesh BALASUBRAMANIAN, Martin Jay SEAMONS, Kaushik ALAYAVALLI, Kwangduk Douglas LEE, Wendy H. YEH, Sudha RATHI, Krishna VIJAYARAGHAVAN, Chiu CHAN
  • Patent number: 8536065
    Abstract: Embodiments of the present invention generally relate to the fabrication of integrated circuits and particularly to the deposition of a boron containing amorphous carbon layer on a semiconductor substrate. In one embodiment, a method of processing a substrate in a processing chamber is provided. The method comprises providing a substrate in a processing volume, flowing a hydrocarbon containing gas mixture into the processing volume, generating a plasma of the hydrocarbon containing gas mixture by applying power from an RF source, flowing a boron containing gas mixture into the processing volume, and depositing a boron containing amorphous carbon film on the substrate in the presence of the plasma, wherein the boron containing amorphous carbon film contains from about 30 to about 60 atomic percentage of boron.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: September 17, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Martin Jay Seamons, Sudha Rathi, Kwangduk Douglas Lee, Deenesh Padhi, Bok Hoen Kim, Chiu Chan
  • Patent number: 8513129
    Abstract: Methods for manufacturing a semiconductor device are provided. In one embodiment, a method includes providing a base material having a first film stack deposited thereon, wherein the base material is formed over the substrate and has a first set of interconnect features. The first film stack comprises a first amorphous carbon layer deposited on a surface of the base material, a first anti-reflective coating layer deposited on the first amorphous carbon layer, and a first photoresist layer deposited on the first anti-reflective coating layer. The first photoresist layer is patterned by shifting laterally a projection of a mask on the first photoresist layer relative to the substrate a desired distance, thereby introducing into the first photoresist layer a first feature pattern to be transferred to the underlying base material, wherein the first feature pattern is not aligned with the first set of interconnect features.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: August 20, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Martin Jay Seamons, Kwangduk Douglas Lee, Chiu Chan, Patrick Reilly, Sudha Rathi
  • Patent number: 8361906
    Abstract: A method of forming an amorphous carbon layer on a substrate in a substrate processing chamber, includes introducing a hydrocarbon source into the processing chamber, introducing argon, alone or in combination with helium, hydrogen, nitrogen, and combinations thereof, into the processing chamber, wherein the argon has a volumetric flow rate to hydrocarbon source volumetric flow rate ratio of about 10:1 to about 20:1, generating a plasma in the processing chamber at a substantially lower pressure of about 2 Torr to 10 Torr, and forming a conformal amorphous carbon layer on the substrate.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: January 29, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Kwangduk Douglas Lee, Martin Jay Seamons, Sudha Rathi, Chiu Chan, Michael H. Lin