Patents by Inventor Sudha Rathi

Sudha Rathi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090197086
    Abstract: A method and structure for the fabrication of semiconductor devices having feature sizes in the range of 90 nm and smaller is provided. In one embodiment of the invention, a method is provided for processing a substrate including depositing an anti-reflective coating layer on a surface of the substrate, depositing an adhesion promotion layer on the anti-reflective coating layer, and depositing a resist material on the adhesion promotion layer. In another embodiment of the invention, a semiconductor substrate structure is provided including a dielectric substrate, an amorphous carbon layer deposited on the dielectric layer, an anti-reflective coating layer deposited on the amorphous carbon layer, an adhesion promotion layer deposited on the anti-reflective coating layer, and a resist material deposited on the adhesion promotion layer.
    Type: Application
    Filed: February 4, 2008
    Publication date: August 6, 2009
    Inventors: Sudha Rathi, Eui Kyoon Kim, Bok Hoen Kim, Martin Jay Seamons, Francimar Campana Schmitt
  • Patent number: 7514125
    Abstract: Methods of making an article having a protective coating for use in semiconductor applications are provided. In certain embodiments, a method of coating an aluminum surface of an article utilized in a semiconductor processing chamber is provided. The method comprises providing a processing chamber; placing the article into the processing chamber; flowing a first gas comprising a carbon source into the processing chamber; flowing a second gas comprising a nitrogen source into the processing chamber; forming a plasma in the chamber; and depositing a coating material on the aluminum surface. In certain embodiments, the coating material comprises an amorphous carbon nitrogen containing layer. In certain embodiments, the article comprises a showerhead configured to deliver a gas to the processing chamber.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: April 7, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Deenesh Padhi, Chiu Chan, Sudha Rathi, Ganesh Balasubramanian, Jianhua Zhou, Karthik Janakiraman, Martin J. Seamons, Visweswaren Sivaramakrishnan, Derek R. Witty, Hichem M'Saad
  • Publication number: 20090050902
    Abstract: The present invention provides semiconductor device formed by an in situ plasma reducing process to reduce oxides or other contaminants, using a compound of nitrogen and hydrogen, typically ammonia, at relatively low temperatures prior to depositing a subsequent layer thereon. The adhesion characteristics of the layers are improved and oxygen presence is reduced compared to the typical physical sputter cleaning process of an oxide layer. This process may be particularly useful for the complex requirements of a dual damascene structure, especially with copper applications.
    Type: Application
    Filed: October 24, 2008
    Publication date: February 26, 2009
    Inventors: Judy H. Huang, Christopher Dennis Bencher, Sudha Rathi, Christopher S. Ngai, Bok Hoen Kim
  • Publication number: 20090044753
    Abstract: An article having a protective coating for use in semiconductor applications and methods for making the same are provided. In certain embodiments, a method of coating an aluminum surface of an article utilized in a semiconductor processing chamber is provided. The method comprises providing a processing chamber; placing the article into the processing chamber; flowing a first gas comprising a carbon source into the processing chamber; flowing a second gas comprising a nitrogen source into the processing chamber; forming a plasma in the chamber; and depositing a coating material on the aluminum surface. In certain embodiments, the coating material comprises an amorphous carbon nitrogen containing layer. In certain embodiments, the article comprises a showerhead configured to deliver a gas to the processing chamber.
    Type: Application
    Filed: October 21, 2008
    Publication date: February 19, 2009
    Inventors: Deenesh Padhi, Chiu Chan, Sudha Rathi, Ganesh Balasubramanian, Jianhua Zhou, Karthik Janakiraman, Martin J. Seamons, Visweswaren Sivaramakrishnan, Derek R. Witty, Hichem M'Saad
  • Publication number: 20080153311
    Abstract: A method for depositing an amorphous carbon layer on a substrate includes the steps of positioning a substrate in a chamber, introducing a hydrocarbon source into the processing chamber, introducing a heavy noble gas into the processing chamber, and generating a plasma in the processing chamber. The heavy noble gas is selected from the group consisting of argon, krypton, xenon, and combinations thereof and the molar flow rate of the noble gas is greater than the molar flow rate of the hydrocarbon source. A post-deposition termination step may be included, wherein the flow of the hydrocarbon source and the noble gas is stopped and a plasma is maintained in the chamber for a period of time to remove particles therefrom.
    Type: Application
    Filed: March 5, 2008
    Publication date: June 26, 2008
    Inventors: Deenesh Padhi, Hyoung-Chan Ha, Sudha Rathi, Derek R. Witty, Chiu Chan, Sohyun Park, Ganesh Balasubramanian, Karthik Janakiraman, Martin Jay Seamons, Visweswaren Sivaramakrishnan, Bok Hoen Kim, Hichem M'Saad
  • Publication number: 20080084650
    Abstract: The present invention generally provides methods and apparatus for monitoring and maintaining flatness of a substrate in a plasma reactor. Certain embodiments of the present invention provide a method for processing a substrate comprising positioning the substrate on an electrostatic chuck, applying an RF power between the an electrode in the electrostatic chuck and a counter electrode positioned parallel to the electrostatic chuck, applying a DC bias to the electrode in the electrostatic chuck to clamp the substrate on the electrostatic chuck, and measuring an imaginary impedance of the electrostatic chuck.
    Type: Application
    Filed: October 3, 2007
    Publication date: April 10, 2008
    Inventors: Ganesh Balasubramanian, Amit Bansal, Eller Juco, Mohamad Ayoub, Hyung-Joon Kim, Karthik Janakiraman, Sudha Rathi, Deenesh Padhi, Martin Seamons, Visweswaren Sivaramakrishnan, Bok Kim, Amir Al-Bayati, Derek Witty, Hichem M'Saad, Anton Baryshnikov, Chiu Chan, Shuang Liu
  • Publication number: 20080020319
    Abstract: A method of forming a device using a graded anti-reflective coating is provided. One or more amorphous carbon layers are formed on a substrate. An anti-reflective coating (ARC) is formed on the one or more amorphous carbon layers wherein the ARC layer has an absorption coefficient that varies across the thickness of the ARC layer. An energy sensitive resist material is formed on the ARC layer. An image of a pattern is introduced into the layer of energy sensitive resist material by exposing the energy sensitive resist material to patterned radiation. The image of the pattern introduced into the layer of energy sensitive resist material is developed.
    Type: Application
    Filed: July 18, 2006
    Publication date: January 24, 2008
    Inventors: Wendy H. Yeh, Martin J. Seamons, Matthew Spuller, Sum-Yee Betty Tang, Kwangduk Douglas Lee, Sudha Rathi
  • Publication number: 20080003824
    Abstract: A method for depositing an amorphous carbon layer on a substrate includes the steps of positioning a substrate in a chamber, introducing a hydrocarbon source into the processing chamber, introducing a heavy noble gas into the processing chamber, and generating a plasma in the processing chamber. The heavy noble gas is selected from the group consisting of argon, krypton, xenon, and combinations thereof and the molar flow rate of the noble gas is greater than the molar flow rate of the hydrocarbon source. A post-deposition termination step may be included, wherein the flow of the hydrocarbon source and the noble gas is stopped and a plasma is maintained in the chamber for a period of time to remove particles therefrom.
    Type: Application
    Filed: June 28, 2006
    Publication date: January 3, 2008
    Inventors: Deenesh Padhi, Hyoung-Chan Ha, Sudha Rathi, Derek R. Wtty, Chiu Chan, Sohyun Park, Ganesh Balasubramanian, Karthik Janakiraman, Martin Jay Seamons, Visweswaren Sivaramakrishnan, Bok Hoen Kim, Hichem M'Saad
  • Publication number: 20070295272
    Abstract: An article having a protective coating for use in semiconductor applications and methods for making the same are provided. In certain embodiments, a method of coating an aluminum surface of an article utilized in a semiconductor processing chamber is provided. The method comprises providing a processing chamber; placing the article into the processing chamber; flowing a first gas comprising a carbon source into the processing chamber; flowing a second gas comprising a nitrogen source into the processing chamber; forming a plasma in the chamber; and depositing a coating material on the aluminum surface. In certain embodiments, the coating material comprises an amorphous carbon nitrogen containing layer. In certain embodiments, the article comprises a showerhead configured to deliver a gas to the processing chamber.
    Type: Application
    Filed: February 28, 2007
    Publication date: December 27, 2007
    Inventors: Deenesh Padhi, Chiu Chan, Sudha Rathi, Ganesh Balasubramanian, Jianhua Zhou, Karthik Janakiraman, Martin J. Seamons, Visweswaren Sivaramakrishnan, Derek R. Witty, Hichem M'Saad
  • Publication number: 20070154851
    Abstract: We have traced the detachment of photoresist during development of patterned features in the range of about 90 nm and smaller to a combination of the reduced “foot print” of the pattern on the underlying substrate and to the contact angle between the underlying substrate surface and the developing reagent. By maintaining a contact angle of about 30 degrees or greater, the detachment of the photoresist from the underlying substrate can be avoided for photoresists including feature sizes in the range of about 90 nm. We have achieved an increased contact angle between the DARC surface and a water-based CAR photoresist developer while simultaneously reducing CAR poisoning by treating the surface of the DARC after film formation.
    Type: Application
    Filed: November 21, 2006
    Publication date: July 5, 2007
    Inventors: Sang Ahn, Sudha Rathi, Heraldo Bothelho
  • Publication number: 20070117050
    Abstract: We have determined that it is necessary to remove hydroxyl groups from the surface of a DARC over which a CAR photoresist is applied, to reduce poisoning of the photoresist during imaging. The poisoning is reduced by treating the surface of the DARC film with a hydrogen or helium-containing plasma which is capable of removing the hydroxyl groups.
    Type: Application
    Filed: December 13, 2006
    Publication date: May 24, 2007
    Inventors: Sang Ahn, Sudha Rathi, Heraldo Bothelho
  • Publication number: 20060222771
    Abstract: A method is provided for forming an amorphous carbon layer, deposited on a dielectric material such as oxide, nitride, silicon carbide, carbon doped oxide, etc., or a metal layer such as tungsten, aluminum or poly-silicon. The method includes the use of chamber seasoning, variable thickness of seasoning film, wider spacing, variable process gas flows, post-deposition purge with inert gas, and post-deposition plasma purge, among others, to make the deposition of an amorphous carbon film at low deposition temperatures possible without any defects or particle contamination.
    Type: Application
    Filed: June 16, 2006
    Publication date: October 5, 2006
    Inventors: Martin Seamons, Wendy Yeh, Sudha Rathi, Heraldo Botelho
  • Patent number: 7105460
    Abstract: Methods are provided for depositing a dielectric material. The dielectric material may be used for an anti-reflective coating or as a hardmask. In one aspect, a method is provided for processing a substrate including introducing a processing gas comprising a silane-based compound and an organosilicon compound to the processing chamber and reacting the processing gas to deposit a nitrogen-free dielectric material on the substrate. The dielectric material comprises silicon and oxygen.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: September 12, 2006
    Assignee: Applied Materials
    Inventors: Bok Hoen Kim, Sudha Rathi, Sang H. Ahn, Christopher D. Bencher, Yuxiang May Wang, Hichem M'Saad, Mario D. Silvetti
  • Publication number: 20060014397
    Abstract: A method is provided for forming an amorphous carbon layer, deposited on a dielectric material such as oxide, nitride, silicon carbide, carbon doped oxide, etc., or a metal layer such as tungsten, aluminum or poly-silicon. The method includes the use of chamber seasoning, variable thickness of seasoning film, wider spacing, variable process gas flows, post-deposition purge with inert gas, and post-deposition plasma purge, among others, to make the deposition of an amorphous carbon film at low deposition temperatures possible without any defects or particle contamination.
    Type: Application
    Filed: July 13, 2004
    Publication date: January 19, 2006
    Inventors: Martin Seamons, Wendy Yeh, Sudha Rathi, Heraldo Botelho
  • Publication number: 20050287771
    Abstract: Methods are provided for depositing amorphous carbon materials. In one aspect, the invention provides a method for processing a substrate including positioning the substrate in a processing chamber, introducing a processing gas into the processing chamber, wherein the processing gas comprises a carrier gas, hydrogen, and one or more precursor compounds, generating a plasma of the processing gas by applying power from a dual-frequency RF source, and depositing an amorphous carbon layer on the substrate.
    Type: Application
    Filed: February 24, 2005
    Publication date: December 29, 2005
    Inventors: Martin Seamons, Wendy Yeh, Sudha Rathi, Deenesh Padhi, Andy Luan, Sum-Yee Tang, Priya Kulkarni, Visweswaren Sivaramakrishnan, Bok Kim, Hichem M'Saad, Yuxiang Wang, Michael Kwan
  • Publication number: 20050263900
    Abstract: The present invention provides an in situ plasma reducing process to reduce oxides or other contaminants, using a compound of nitrogen and hydrogen, typically ammonia, at relatively low temperatures prior to depositing a subsequent layer thereon. The adhesion characteristics of the layers are improved and oxygen presence is reduced compared to the typical physical sputter cleaning process of an oxide layer. This process may be particularly useful for the complex requirements of a dual damascene structure, especially with copper applications.
    Type: Application
    Filed: June 29, 2005
    Publication date: December 1, 2005
    Inventors: Judy Huang, Christopher Bencher, Sudha Rathi, Christopher Ngai, Bok Kim
  • Patent number: 6946401
    Abstract: The present invention provides an in situ plasma reducing process to reduce oxides or other contaminants, using a compound of nitrogen and hydrogen, typically ammonia, at relatively low temperatures prior to depositing a subsequent layer thereon. The adhesion characteristics of the layers are improved and oxygen presence is reduced compared to the typical physical sputter cleaning process of an oxide layer. This process may be particularly useful for the complex requirements of a dual damascene structure, especially with copper applications.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: September 20, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Judy H. Huang, Christopher Dennis Bencher, Sudha Rathi, Christopher S. Ngai, Bok Hoen Kim
  • Publication number: 20050202683
    Abstract: Methods are provided for depositing amorphous carbon materials. In one aspect, the invention provides a method for processing a substrate including forming a dielectric material layer on a surface of the substrate, depositing an amorphous carbon layer on the dielectric material layer by introducing a processing gas comprises one or more hydrocarbon compounds and an argon carrier gas, and generating a plasma of the processing gas by applying power from a dual-frequency RF source, etching the amorphous carbon layer to form a patterned amorphous carbon layer, and etching feature definitions in the dielectric material layer corresponding to the patterned amorphous carbon layer. The amorphous carbon layer may act as an etch stop, an anti-reflective coating, or both.
    Type: Application
    Filed: March 12, 2004
    Publication date: September 15, 2005
    Inventors: Yuxiang Wang, Sudha Rathi, Michael Kwan, Hichem M'Saad
  • Publication number: 20050199585
    Abstract: Methods are provided for processing a substrate including etching conductive materials with amorphous carbon materials disposed thereon. In one aspect, the invention provides a method for processing a substrate including forming a conductive material layer on a surface of the substrate, depositing an amorphous carbon layer on the conductive material layer, etching the amorphous carbon layer to form a patterned amorphous carbon layer, and etching feature definitions in the conductive material layer corresponding to the patterned amorphous carbon layer. The amorphous carbon layer may act as a hardmask, an etch stop, or an anti-reflective coating.
    Type: Application
    Filed: March 12, 2004
    Publication date: September 15, 2005
    Inventors: Yuxiang Wang, David Bittrich, Christopher Bencher, Heraldo Botelho, Sudha Rathi, Michael Kwan
  • Patent number: 6927178
    Abstract: Methods are provided for depositing a dielectric material. The dielectric material may be used for an anti-reflective coating or as a hardmask. In one aspect, a method is provided for processing a substrate including introducing a processing gas comprising a silane-based compound and an oxygen and carbon containing compound to the processing chamber and reacting the processing gas to deposit a nitrogen-free dielectric material on the substrate. The dielectric material comprises silicon and oxygen. In another aspect, the dielectric material forms one or both layers in a dual layer anti-reflective coating.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: August 9, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Bok Hoen Kim, Sudha Rathi, Sang H. Ahn, Christopher D. Bencher, Yuxiang May Wang, Hichem M'Saad, Mario D. Silvetti, Miguel Fung, Keebum Jung, Lei Zhu