Patents by Inventor Sukesh Sandhu

Sukesh Sandhu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8963279
    Abstract: Structures and methods are disclosed for the electrical isolation of semiconductor devices. A method of forming a semiconductor device may include providing a second integrated device region on a substrate that is spaced apart from a first integrated device region. An isolation region may be interposed between the first integrated device region and the second integrated device region. The isolation region may include an isolation recess that projects into the substrate to a first predetermined depth, and that may be extended to a second predetermined depth.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: February 24, 2015
    Assignee: Micron Technology, Inc.
    Inventor: Sukesh Sandhu
  • Patent number: 8378446
    Abstract: Structures and methods are disclosed for the electrical isolation of semiconductor devices. A method of forming a semiconductor device may include providing a second integrated device region on a substrate that is spaced apart from a first integrated device region. An isolation region may be interposed between the first integrated device region and the second integrated device region. The isolation region may include an isolation recess that projects into the substrate to a first predetermined depth, and that may be extended to a second predetermined depth.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: February 19, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Sukesh Sandhu
  • Publication number: 20130009276
    Abstract: The invention relates to a method and resulting structure that can substantially minimize and/or eliminate void formation during an isolation trench isolation fill process for typical trench shaped and goal-post shaped isolation regions. First, a thin thermal oxidation layer is grown on the sidewall of each trench and then a layer of polysilicon is deposited above the oxidation layer and oxidized. In one embodiment, a repeating series of polysilicon deposition and polysilicon oxidation steps are performed until each trench has been completely filled. In another embodiment, within a goal-post shaped trench having a wider upper portion and a narrower lower portion, the remainder of the upper wider trench portion is filled using a conventional high density plasma technique.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Inventors: Paul J. Rudeck, Sukesh Sandhu
  • Patent number: 8304322
    Abstract: The invention relates to a method and resulting structure that can substantially minimize and/or eliminate void formation during an isolation trench isolation fill process for typical trench shaped and goal-post shaped isolation regions. First, a thin thermal oxidation layer is grown on the sidewall of each trench and then a layer of polysilicon is deposited above the oxidation layer and oxidized. In one embodiment, a repeating series of polysilicon deposition and polysilicon oxidation steps are performed until each trench has been completely filled. In another embodiment, within a goal-post shaped trench having a wider upper portion and a narrower lower portion, the remainder of the upper wider trench portion is filled using a conventional high density plasma technique.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: November 6, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Paul J. Rudeck, Sukesh Sandhu
  • Patent number: 8269306
    Abstract: A dielectric liner is formed in first and second trenches respectively in first and second portions of a substrate. A layer of material is formed overlying the dielectric liner so as to substantially concurrently substantially fill the first trench and partially fill the second trench. The layer of material is removed substantially concurrently from the first and second trenches to expose substantially all of the dielectric liner within the second trench and to form a plug of the material in the one or more first trenches. A second layer of dielectric material is formed substantially concurrently on the plug in the first trench and on the exposed portion of the dielectric liner in the second trench. The second layer of dielectric material substantially fills a portion of the first trench above the plug and the second trench.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: September 18, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Sukesh Sandhu
  • Patent number: 8035189
    Abstract: The invention includes methods of forming oxide structures under corners of transistor gate stacks and adjacent trenched isolation regions. Such methods can include exposure of a semiconductor material to steam and H2, with the H2 being present to a concentration of from about 2% to about 40%, by volume. An oxide structure formed under the bottom corner of a transistor gate stack can have a bottom surface with a topography that includes a step of at least about 50 ?, and an upper surface directly over the bottom surface and having a topography that is substantially planar. Methodology of the present invention can be utilized to form semiconductor constructions suitable for incorporation into highly integrated circuitry. The highly integrated circuitry can be incorporated into electronic systems, and can, for example, be utilized in processors and/or memory storage devices.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: October 11, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Michael A. Smith, Sukesh Sandhu, Xianfeng Zhou, Graham Wolstenholme
  • Publication number: 20110210417
    Abstract: Structures and methods are disclosed for the electrical isolation of semiconductor devices. A method of forming a semiconductor device may include providing a second integrated device region on a substrate that is spaced apart from a first integrated device region. An isolation region may be interposed between the first integrated device region and the second integrated device region. The isolation region may include an isolation recess that projects into the substrate to a first predetermined depth, and that may be extended to a second predetermined depth.
    Type: Application
    Filed: May 2, 2011
    Publication date: September 1, 2011
    Inventor: Sukesh Sandhu
  • Patent number: 7999328
    Abstract: A method of forming and resulting isolation region, which allows for densification of an oxide layer in the isolation region. One exemplary embodiment of the method includes the steps of forming a first trench, forming an oxide layer on the bottom and sidewalls of the trench, forming nitride spacers on the lined trench, and thereafter etching the silicon beneath the first trench to form a second trench area. An oxide layer is then deposited to fill the second trench. Densification of the isolation region is possible because the silicon is covered with nitride, and therefore will not be oxidized. Light etches are then performed to etch the oxide and nitride spacer area in the first trench region. A conventional oxide fill process can then be implemented to complete the isolation region.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: August 16, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Sukesh Sandhu, Gurtej Sandhu
  • Patent number: 7935610
    Abstract: Structures and methods are disclosed for the electrical isolation of semiconductor devices. A method of forming a semiconductor device may include providing a second integrated device region on a substrate that is spaced apart from a first integrated device region. An isolation region may be interposed between the first integrated device region and the second integrated device region. The isolation region may include an isolation recess that projects into the substrate to a first predetermined depth, and that may be extended to a second predetermined depth.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: May 3, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Sukesh Sandhu
  • Publication number: 20110073929
    Abstract: A first dielectric layer is formed over a substrate. A single layer first conductive layer that acts as a floating gate is formed over the first dielectric layer. A trough is formed in the first conductive layer to increase the capacitive coupling of the floating gate with a control gate. An intergate dielectric layer is formed over the floating gate layer. A second conductive layer is formed over the second dielectric layer to act as a control gate.
    Type: Application
    Filed: December 7, 2010
    Publication date: March 31, 2011
    Inventors: Sukesh Sandhu, Gurtej S. Sandhu
  • Publication number: 20110024822
    Abstract: A dielectric liner is formed in first and second trenches respectively in first and second portions of a substrate. A layer of material is formed overlying the dielectric liner so as to substantially concurrently substantially fill the first trench and partially fill the second trench. The layer of material is removed substantially concurrently from the first and second trenches to expose substantially all of the dielectric liner within the second trench and to form a plug of the material in the one or more first trenches. A second layer of dielectric material is formed substantially concurrently on the plug in the first trench and on the exposed portion of the dielectric liner in the second trench. The second layer of dielectric material substantially fills a portion of the first trench above the plug and the second trench.
    Type: Application
    Filed: October 11, 2010
    Publication date: February 3, 2011
    Inventor: Sukesh Sandhu
  • Publication number: 20100276781
    Abstract: The invention includes methods of forming oxide structures under corners of transistor gate stacks and adjacent trenched isolation regions. Such methods can include exposure of a semiconductor material to steam and H2, with the H2 being present to a concentration of from about 2% to about 40%, by volume. An oxide structure formed under the bottom corner of a transistor gate stack can have a bottom surface with a topography that includes a step of at least about 50 ?, and an upper surface directly over the bottom surface and having a topography that is substantially planar. Methodology of the present invention can be utilized to form semiconductor constructions suitable for incorporation into highly integrated circuitry. The highly integrated circuitry can be incorporated into electronic systems, and can, for example, be utilized in processors and/or memory storage devices.
    Type: Application
    Filed: July 15, 2010
    Publication date: November 4, 2010
    Inventors: Michael A. Smith, Sukesh Sandhu, Xianfeng Zhou, Graham Wolstenholme
  • Patent number: 7811935
    Abstract: A dielectric liner is formed in first and second trenches respectively in first and second portions of a substrate. A layer of material is formed overlying the dielectric liner so as to substantially concurrently substantially fill the first trench and partially fill the second trench. The layer of material is removed substantially concurrently from the first and second trenches to expose substantially all of the dielectric liner within the second trench and to form a plug of the material in the one or more first trenches. A second layer of dielectric material is formed substantially concurrently on the plug in the first trench and on the exposed portion of the dielectric liner in the second trench. The second layer of dielectric material substantially fills a portion of the first trench above the plug and the second trench.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: October 12, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Sukesh Sandhu
  • Patent number: 7781860
    Abstract: The invention includes methods of forming oxide structures under corners of transistor gate stacks and adjacent trenched isolation regions. Such methods can include exposure of a semiconductor material to steam and H2, with the H2 being present to a concentration of from about 2% to about 40%, by volume. An oxide structure formed under the bottom corner of a transistor gate stack can have a bottom surface with a topography that includes a step of at least about 50 ?, and an upper surface directly over the bottom surface and having a topography that is substantially planar. Methodology of the present invention can be utilized to form semiconductor constructions suitable for incorporation into highly integrated circuitry. The highly integrated circuitry can be incorporated into electronic systems, and can, for example, be utilized in processors and/or memory storage devices.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: August 24, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Michael A. Smith, Sukesh Sandhu, Xianfeng Zhou, Graham Wolstenholme
  • Patent number: 7749837
    Abstract: A first dielectric layer is formed over a substrate. A single layer first conductive layer that acts as a floating gate is formed over the first dielectric layer. A trough is formed in the first conductive layer to increase the capacitive coupling of the floating gate with a control gate. An intergate dielectric layer is formed over the floating gate layer. A second conductive layer is formed over the second dielectric layer to act as a control gate.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: July 6, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Sukesh Sandhu, Gurtej S. Sandhu
  • Publication number: 20090072347
    Abstract: The invention includes methods of forming oxide structures under corners of transistor gate stacks and adjacent trenched isolation regions. Such methods can include exposure of a semiconductor material to steam and H2, with the H2 being present to a concentration of from about 2% to about 40%, by volume. An oxide structure formed under the bottom corner of a transistor gate stack can have a bottom surface with a topography that includes a step of at least about 50 ?, and an upper surface directly over the bottom surface and having a topography that is substantially planar. Methodology of the present invention can be utilized to form semiconductor constructions suitable for incorporation into highly integrated circuitry. The highly integrated circuitry can be incorporated into electronic systems, and can, for example, be utilized in processors and/or memory storage devices.
    Type: Application
    Filed: November 21, 2008
    Publication date: March 19, 2009
    Inventors: Michael A. Smith, Sukesh Sandhu, Xianfeng Zhou, Graham Wolstenholme
  • Patent number: 7473615
    Abstract: The invention includes methods of forming oxide structures under corners of transistor gate stacks and adjacent trenched isolation regions. Such methods can include exposure of a semiconductor material to steam and H2, with the H2 being present to a concentration of from about 2% to about 40%, by volume. An oxide structure formed under the bottom corner of a transistor gate stack can have a bottom surface with a topography that includes a step of at least about 50 ?, and an upper surface directly over the bottom surface and having a topography that is substantially planar. Methodology of the present invention can be utilized to form semiconductor constructions suitable for incorporation into highly integrated circuitry. The highly integrated circuitry can be incorporated into electronic systems, and can, for example, be utilized in processors and/or memory storage devices.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: January 6, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Michael A. Smith, Sukesh Sandhu, Xianfeng Zhou, Graham Wolstenholme
  • Patent number: 7453134
    Abstract: An integrated circuit device has a substrate with first and second portions. One or more first active regions are formed in the first portion of the substrate. Each of the one or more first active regions has rounded corners. One or more first circuit elements are formed on the one or more first active regions after the corners of the one or more first active regions have been rounded. One or more second active regions are formed in the second portion of the substrate. One or more second circuit elements are formed on the one or more second active regions.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: November 18, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Sukesh Sandhu, Kevin Torek
  • Patent number: 7413962
    Abstract: A method for forming a semiconductor device comprises forming a layer to be etched, then forming a hard mask layer over the layer to be etched. The hard mask is etched to form an opening defined by first and second cross-sectional sidewalls in the hard mask layer. In one embodiment, the opening in the hard mask layer is formed at the minimum limits allowable by optical lithography. A conformal spacer layer is formed over the hard mask layer and on the sidewalls of the hard mask, then spacer etched to form first and second cross-sectional spacers along the first and second sidewalls in the patterned hard mask layer. The hard mask and spacers are preferably formed from amorphous carbon. The layer to be etched is etched using the hard mask layer and the spacers as a pattern, then the hard mask layer and spacers are removed.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: August 19, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Sukesh Sandhu, Gurtej S. Sandhu
  • Patent number: 7396720
    Abstract: A first dielectric layer is formed over a substrate. A single layer first conductive layer that acts as a floating gate is formed over the first dielectric layer. A trough is formed in the first conductive layer to increase the capacitive coupling of the floating gate with a control gate. An intergate dielectric layer is formed over the floating gate layer. A second conductive layer is formed over the second dielectric layer to act as a control gate.
    Type: Grant
    Filed: July 27, 2004
    Date of Patent: July 8, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Sukesh Sandhu, Gurtej S. Sandhu