Patents by Inventor Sukesh Sandhu

Sukesh Sandhu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080124888
    Abstract: Structures and methods are disclosed for the electrical isolation of semiconductor devices. A method of forming a semiconductor device may include providing a second integrated device region on a substrate that is spaced apart from a first integrated device region. An isolation region may be interposed between the first integrated device region and the second integrated device region. The isolation region may include an isolation recess that projects into the substrate to a first predetermined depth, and that may be extended to a second predetermined depth.
    Type: Application
    Filed: November 28, 2006
    Publication date: May 29, 2008
    Inventor: Sukesh Sandhu
  • Patent number: 7375004
    Abstract: A method of forming and resulting isolation region, which allows for densification of an oxide layer in the isolation region. One exemplary embodiment of the method includes the steps of forming a first trench, forming an oxide layer on the bottom and sidewalls of the trench, forming nitride spacers on the lined trench, and thereafter etching the silicon beneath the first trench to form a second trench area. An oxide layer is then deposited to fill the second trench. Densificiation of the isolation region is possible because the silicon is covered with nitride, and therefore will not be oxidized. Light etches are then performed to etch the oxide and nitride spacer area in the first trench region. A conventional oxide fill process can then be implemented to complete the isolation region.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: May 20, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Sukesh Sandhu, Gurtej Sandhu
  • Patent number: 7358139
    Abstract: The invention includes methods of forming field effect transistors. In one implementation, a method of forming a field effect transistor having a gate comprising a conductive metal or metal compound received over conductively doped semiconductive material includes forming transistor gate semiconductive material into a gate line over a semiconductive material channel region. The gate line includes semiconductive material sidewalls. The semiconductive material sidewalls of the gate line are oxidized. After the oxidizing, at least one of a conductive metal or metal compound is formed in electrical connection with the transistor gate semiconductive material to comprise a substantially coextensive elongated portion of a final construction of the gate line of the field effect transistor being formed.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: April 15, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Andrew R. Bicksler, Sukesh Sandhu
  • Publication number: 20070243692
    Abstract: The invention relates to a method and resulting structure that can substantially minimize and/or eliminate void formation during an isolation trench isolation fill process for typical trench shaped and goal-post shaped isolation regions. First, a thin thermal oxidation layer is grown on the sidewall of each trench and then a layer of polysilicon is deposited above the oxidation layer and oxidized. In one embodiment, a repeating series of polysilicon deposition and polysilicon oxidation steps are performed until each trench has been completely filled. In another embodiment, within a goal-post shaped trench having a wider upper portion and a narrower lower portion, the remainder of the upper wider trench portion is filled using a conventional high density plasma technique.
    Type: Application
    Filed: April 18, 2006
    Publication date: October 18, 2007
    Inventors: Paul Rudeck, Sukesh Sandhu
  • Patent number: 7271064
    Abstract: The invention includes methods of forming field effect transistors. In one implementation, a method of forming a field effect transistor having a gate comprising a conductive metal or metal compound received over conductively doped semiconductive material includes forming transistor gate semiconductive material into a gate line over a semiconductive material channel region. The gate line includes semiconductive material sidewalls. The semiconductive material sidewalls of the gate line are oxidized. After the oxidizing, at least one of a conductive metal or metal compound is formed in electrical connection with the transistor gate semiconductive material to comprise a substantially coextensive elongated portion of a final construction of the gate line of the field effect transistor being formed.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: September 18, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Andrew R. Bicksler, Sukesh Sandhu
  • Patent number: 7271060
    Abstract: The invention includes methods in which common processing steps are utilized during fabrication of components of a memory array region of a semiconductor substrate and components of a peripheral region proximate the memory array region, and yet the components of the peripheral region are built for different performance characteristics than the components of the memory array region. The methods can include laterally recessing nitride-containing masking structures associated with the peripheral region to a greater extent than nitride-containing masking structures associated with the memory array region, followed by thermal oxidation of the substrate to form dielectric material adjacent the masking structures.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: September 18, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Sukesh Sandhu, Kelly T. Hurley
  • Publication number: 20070212848
    Abstract: A method of forming and resulting isolation region, which allows for densification of an oxide layer in the isolation region. One exemplary embodiment of the method includes the steps of forming a first trench, forming an oxide layer on the bottom and sidewalls of the trench, forming nitride spacers on the lined trench, and thereafter etching the silicon beneath the first trench to form a second trench area. An oxide layer is then deposited to fill the second trench. Densificiation of the isolation region is possible because the silicon is covered with nitride, and therefore will not be oxidized. Light etches are then performed to etch the oxide and nitride spacer area in the first trench region. A conventional oxide fill process can then be implemented to complete the isolation region.
    Type: Application
    Filed: March 10, 2006
    Publication date: September 13, 2007
    Inventors: Sukesh Sandhu, Gurtej Sandhu
  • Publication number: 20070210403
    Abstract: A dielectric liner is formed in first and second trenches respectively in first and second portions of a substrate. A layer of material is formed overlying the dielectric liner so as to substantially concurrently substantially fill the first trench and partially fill the second trench. The layer of material is removed substantially concurrently from the first and second trenches to expose substantially all of the dielectric liner within the second trench and to form a plug of the material in the one or more first trenches. A second layer of dielectric material is formed substantially concurrently on the plug in the first trench and on the exposed portion of the dielectric liner in the second trench. The second layer of dielectric material substantially fills a portion of the first trench above the plug and the second trench.
    Type: Application
    Filed: March 7, 2006
    Publication date: September 13, 2007
    Inventor: Sukesh Sandhu
  • Publication number: 20070212874
    Abstract: A method for filling a shallow isolation trench comprises partially filling the trench with a first material, then filling the trench the rest of the way with a second material. For the first material, a substance which flows more easily into narrow, deep trenches is selected, while for the second material, a substance which provides good electrical isolation is selected. In one embodiment, the first material may comprise silicon nitride or polysilicon and the second material may comprise high density plasma oxide (HDP). A trench filled using an embodiment of the inventive method is also described.
    Type: Application
    Filed: March 8, 2006
    Publication date: September 13, 2007
    Inventor: Sukesh Sandhu
  • Publication number: 20070210390
    Abstract: A method of forming and resulting isolation region, which allows for densification of an oxide layer in the isolation region. One exemplary embodiment of the method includes the steps of forming a first trench, forming an oxide layer on the bottom and sidewalls of the trench, forming nitride spacers on the lined trench, and thereafter etching the silicon beneath the first trench to form a second trench area. An oxide layer is then deposited to fill the second trench. Densificiation of the isolation region is possible because the silicon is covered with nitride, and therefore will not be oxidized. Light etches are then performed to etch the oxide and nitride spacer area in the first trench region. A conventional oxide fill process can then be implemented to complete the isolation region.
    Type: Application
    Filed: March 6, 2007
    Publication date: September 13, 2007
    Inventors: Sukesh Sandhu, Gurtej Sandhu
  • Publication number: 20070194402
    Abstract: Structures, methods, devices, and systems are provided, including shallow trench isolation structures. In particular, a semiconductor device including a substrate and a shallow trench isolation structure on the substrate. The shallow trench isolation structure includes a first isolation trench portion and a second isolation trench portion. The first isolation trench portion has a first sidewall that is perpendicular or nearly perpendicular to the surface of the substrate, while the second isolation trench portion has a second sidewall that is angled obliquely with respect to the surface of the substrate. The second isolation trench portion is formed such that it has a smaller volume than the first isolation trench portion.
    Type: Application
    Filed: February 21, 2006
    Publication date: August 23, 2007
    Inventors: Sukesh Sandhu, Xiaolong Fang
  • Patent number: 7241661
    Abstract: A method of forming a coupling dielectric in a memory cell includes forming an oxide on a substrate, forming Ta2O5 on the oxide, oxidizing the Ta2O5 with rapid thermal process (RTP) at a temperature above the crystallization temperature for Ta2O5, forming a cell nitride on the oxidized Ta2O5, and forming a wetgate oxide on the cell nitride.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: July 10, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Sukesh Sandhu, Dan Gealy, Gurtej Singh Sandhu
  • Publication number: 20070114633
    Abstract: An integrated circuit device has a substrate with first and second portions. One or more first active regions are formed in the first portion of the substrate. Each of the one or more first active regions has rounded corners. One or more first circuit elements are formed on the one or more first active regions after the corners of the one or more first active regions have been rounded. One or more second active regions are formed in the second portion of the substrate. One or more second circuit elements are formed on the one or more second active regions.
    Type: Application
    Filed: January 12, 2007
    Publication date: May 24, 2007
    Inventors: Sukesh Sandhu, Kevin Torek
  • Patent number: 7179717
    Abstract: Forming an integrated circuit device includes forming a hard mask layer overlying a semiconductor substrate. The hard mask layer is patterned to expose portions of the substrate and edges of the hard mask layer. Exposed portions of the substrate are removed. A first portion of the substrate is covered with a photoresist layer while leaving a second portion exposed. The exposed edges of the hard mask are recessed to expose a third portion of the substrate. Recessing the exposed edges of the hard mask includes using at least a dry-etch chemistry. The exposed second and third portions of the substrate are oxidized.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: February 20, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Sukesh Sandhu, Kevin Torek
  • Publication number: 20070029635
    Abstract: The invention includes methods of forming oxide structures under corners of transistor gate stacks and adjacent trenched isolation regions. Such methods can include exposure of a semiconductor material to steam and H2, with the H2 being present to a concentration of from about 2% to about 40%, by volume. An oxide structure formed under the bottom corner of a transistor gate stack can have a bottom surface with a topography that includes a step of at least about 50 ?, and an upper surface directly over the bottom surface and having a topography that is substantially planar. Methodology of the present invention can be utilized to form semiconductor constructions suitable for incorporation into highly integrated circuitry. The highly integrated circuitry can be incorporated into electronic systems, and can, for example, be utilized in processors and/or memory storage devices.
    Type: Application
    Filed: August 5, 2005
    Publication date: February 8, 2007
    Inventors: Michael Smith, Sukesh Sandhu, Xianfeng Zhou, Graham Wolstenholme
  • Publication number: 20060292793
    Abstract: The invention includes methods in which common processing steps are utilized during fabrication of components of a memory array region of a semiconductor substrate and components of a peripheral region proximate the memory array region, and yet the components of the peripheral region are built for different performance characteristics than the components of the memory array region. The methods can include laterally recessing nitride-containing masking structures associated with the peripheral region to a greater extent than nitride-containing masking structures associated with the memory array region, followed by thermal oxidation of the substrate to form dielectric material adjacent the masking structures.
    Type: Application
    Filed: June 24, 2005
    Publication date: December 28, 2006
    Inventors: Sukesh Sandhu, Kelly Hurley
  • Publication number: 20060270181
    Abstract: Forming an integrated circuit device includes forming a hard mask layer overlying a semiconductor substrate. The hard mask layer is patterned to expose portions of the substrate and edges of the hard mask layer. Exposed portions of the substrate are removed. A first portion of the substrate is covered with a photoresist layer while leaving a second portion exposed. The exposed edges of the hard mask are recessed to expose a third portion of the substrate. Recessing the exposed edges of the hard mask includes using at least a dry-etch chemistry. The exposed second and third portions of the substrate are oxidized.
    Type: Application
    Filed: May 25, 2005
    Publication date: November 30, 2006
    Inventors: Sukesh Sandhu, Kevin Torek
  • Publication number: 20060258095
    Abstract: A first dielectric layer is formed over a substrate. A single layer first conductive layer that acts as a floating gate is formed over the first dielectric layer. A trough is formed in the first conductive layer to increase the capacitive coupling of the floating gate with a control gate. An intergate dielectric layer is formed over the floating gate layer. A second conductive layer is formed over the second dielectric layer to act as a control gate.
    Type: Application
    Filed: July 14, 2006
    Publication date: November 16, 2006
    Inventors: Sukesh Sandhu, Gurtej Sandhu
  • Publication number: 20060258103
    Abstract: The invention includes methods of forming field effect transistors. In one implementation, a method of forming a field effect transistor having a gate comprising a conductive metal or metal compound received over conductively doped semiconductive material includes forming transistor gate semiconductive material into a gate line over a semiconductive material channel region. The gate line includes semiconductive material sidewalls. The semiconductive material sidewalls of the gate line are oxidized. After the oxidizing, at least one of a conductive metal or metal compound is formed in electrical connection with the transistor gate semiconductive material to comprise a substantially coextensive elongated portion of a final construction of the gate line of the field effect transistor being formed.
    Type: Application
    Filed: July 20, 2006
    Publication date: November 16, 2006
    Inventors: Andrew Bicksler, Sukesh Sandhu
  • Publication number: 20060246655
    Abstract: A method of forming a coupling dielectric in a memory cell includes forming an oxide on a substrate, forming Ta2O5 on the oxide, oxidizing the Ta2O5 with rapid thermal process (RTP) at a temperature above the crystallization temperature for Ta2O5, forming a cell nitride on the oxidized Ta2O5, and forming a wetgate oxide on the cell nitride.
    Type: Application
    Filed: July 10, 2006
    Publication date: November 2, 2006
    Inventors: Sukesh Sandhu, Dan Gealy, Gurtej Sandhu