Patents by Inventor Sunil Shanker

Sunil Shanker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8334015
    Abstract: A combinatorial processing chamber and method are provided. In the method a fluid volume flows over a surface of a substrate with differing portions of the fluid volume having different constituent components to concurrently expose segregated regions of the substrate to a mixture of the constituent components that differ from constituent components to which adjacent regions are exposed. Differently processed segregated regions are generated through the multiple flowings.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: December 18, 2012
    Assignee: Intermolecular, Inc.
    Inventors: Tony P. Chiang, Sunil Shanker, Chi-I Lang
  • Patent number: 8318611
    Abstract: Combinatorial plasma enhanced deposition techniques are described, including designating multiple regions of a substrate, providing a precursor to at least a first region of the multiple regions, and providing a plasma to the first region to deposit a first material on the first region formed using the first precursor, wherein the first material is different from a second material formed on a second region of the substrate.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: November 27, 2012
    Assignee: Intermolecular, Inc.
    Inventors: Sunil Shanker, Tony P. Chiang
  • Patent number: 8318572
    Abstract: This disclosure provides a method of fabricating a semiconductor stack and associated device, such as a capacitor and DRAM cell. In particular, a bottom electrode has a material selected for lattice matching characteristics. This material may be created from a relatively inexpensive metal oxide which is processed to adopt a conductive, but difficult-to-produce oxide state, with specific crystalline form; to provide one example, specific materials are disclosed that are compatible with the growth of rutile phase titanium dioxide (TiO2) for use as a dielectric, thereby leading to predictable and reproducible higher dielectric constant and lower effective oxide thickness and, thus, greater part density at lower cost.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: November 27, 2012
    Assignee: Intermolecular, Inc.
    Inventors: Sunil Shanker, Xiangxin Rui, Pragati Kumar, Hanhong Chen, Toshiyuki Hirota
  • Patent number: 8318573
    Abstract: Nonvolatile memory elements that are based on resistive switching memory element layers are provided. A nonvolatile memory element may have a resistive switching metal oxide layer. The resistive switching metal oxide layer may have one or more layers of oxide. A resistive switching metal oxide may be doped with a dopant that increases its melting temperature and enhances its thermal stability. Layers may be formed to enhance the thermal stability of the nonvolatile memory element. An electrode for a nonvolatile memory element may contain a conductive layer and a buffer layer.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: November 27, 2012
    Assignee: Intermolecular, Inc.
    Inventors: Sandra G. Malhotra, Pragati Kumar, Sean Barstow, Tony Chiang, Prashant B. Phatak, Wen Wu, Sunil Shanker
  • Patent number: 8294219
    Abstract: Nonvolatile memory elements that are based on resistive switching memory element layers are provided. A nonvolatile memory element may have a resistive switching metal oxide layer. The resistive switching metal oxide layer may have one or more layers of oxide. A resistive switching metal oxide may be doped with a dopant that increases its melting temperature and enhances its thermal stability. Layers may be formed to enhance the thermal stability of the nonvolatile memory element. An electrode for a nonvolatile memory element may contain a conductive layer and a buffer layer.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: October 23, 2012
    Assignee: Intermolecular, Inc.
    Inventors: Sandra G. Malhotra, Pragati Kumar, Sean Barstow, Tony Chiang, Prashant B. Phatak, Wen Wu, Sunil Shanker
  • Patent number: 8278735
    Abstract: This disclosure provides (a) methods of making an oxide layer (e.g., a dielectric layer) based on yttrium and titanium, to have a high dielectric constant and low leakage characteristic and (b) related devices and structures. An oxide layer having both yttrium and titanium may be fabricated either as an amorphous oxide or as an alternating series of monolayers. In several embodiments, the oxide is characterized by a yttrium contribution to total metal that is specifically controlled. The oxide layer can be produced as the result of a reactive process, if desired, via either a PVD process or, alternatively, via an atomic layer deposition process that employs specific precursor materials to allow for a common process temperature window for both titanium and yttrium reactions.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: October 2, 2012
    Assignee: Intermolecular, Inc.
    Inventors: Imran Hashim, Indranil De, Tony Chiang, Edward Haywood, Hanhong Chen, Nobi Fuchigami, Pragati Kumar, Sandra Malhotra, Sunil Shanker
  • Publication number: 20120171839
    Abstract: This disclosure provides a method of fabricating a semiconductor stack and associated device such as a capacitor and DRAM cell. In particular, a bottom electrode upon which a dielectric layer is to be grown may have a ruthenium-based surface. Lattice matching of the ruthenium surface with the dielectric layer (e.g., titanium oxide, strontium titanate or barium strontium titanate) helps promote the growth of rutile-phase titanium oxide, thereby leading to higher dielectric constant and lower effective oxide thickness. The ruthenium-based material also provides a high work function material, leading to lower leakage. To mitigate nucleation delay associated with the use of ruthenium, an adherence or glue layer based in titanium may be employed. A pretreatment process may be further employed so as to increase effective capacitor plate area, and thus promote even further improvements in dielectric constant and effective oxide thickness (“EOT”).
    Type: Application
    Filed: September 18, 2009
    Publication date: July 5, 2012
    Applicant: INTERMOLECULAR INC.
    Inventors: Hanhong Chen, Nobumichi Fuchigami, Imran Hashim, Pragati Kumar, Sandra Malhotra, Sunil Shanker
  • Patent number: 8202808
    Abstract: Embodiments of the current invention include methods of forming a strontium titanate (SrTiO3) film using atomic layer deposition (ALD). More particularly, the method includes forming a plurality of titanium oxide (TiO2) unit films using ALD and forming a plurality of strontium oxide (SrO) unit films using ALD. The combined thickness of the TiO2 and SrO unit films is less than approximately 5 angstroms. The TiO2 and SrO units films are then annealed to form a strontium titanate layer.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: June 19, 2012
    Assignee: Intermolecular, Inc.
    Inventors: Laura M. Matz, Xiangxin Rui, Xinjian Lei, Sunil Shanker, Moo-Sung Kim, Iain Buchanan
  • Publication number: 20120142143
    Abstract: Resistive switching nonvolatile memory elements are provided. A metal-containing layer and an oxide layer for a memory element can be heated using rapid thermal annealing techniques. During heating, the oxide layer may decompose and react with the metal-containing layer. Oxygen from the decomposing oxide layer may form a metal oxide with metal from the metal-containing layer. The resulting metal oxide may exhibit resistive switching for the resistive switching memory elements.
    Type: Application
    Filed: February 10, 2012
    Publication date: June 7, 2012
    Applicant: Intermolecular, Inc.
    Inventors: Pragati Kumar, Sean Barstow, Sunil Shanker, Tony Chiang
  • Publication number: 20120122291
    Abstract: Nonvolatile memory elements that are based on resistive switching memory element layers are provided. A nonvolatile memory element may have a resistive switching metal oxide layer. The resistive switching metal oxide layer may have one or more layers of oxide. A resistive switching metal oxide may be doped with a dopant that increases its melting temperature and enhances its thermal stability. Layers may be formed to enhance the thermal stability of the nonvolatile memory element. An electrode for a nonvolatile memory element may contain a conductive layer and a buffer layer.
    Type: Application
    Filed: December 27, 2011
    Publication date: May 17, 2012
    Applicant: INTERMOLECULAR, INC.
    Inventors: Sandra G. Malhotra, Pragati Kumar, Sean Barstow, Tony Chiang, Prashant B. Phatak, Wen Wu, Sunil Shanker
  • Publication number: 20120100723
    Abstract: Combinatorial plasma enhanced deposition techniques are described, including designating multiple regions of a substrate, providing a precursor to at least a first region of the multiple regions, and providing a plasma to the first region to deposit a first material on the first region formed using the first precursor, wherein the first material is different from a second material formed on a second region of the substrate.
    Type: Application
    Filed: December 27, 2011
    Publication date: April 26, 2012
    Applicant: Intermolecular
    Inventors: Sunil Shanker, Tony Chiang
  • Publication number: 20120100724
    Abstract: Combinatorial plasma enhanced deposition techniques are described, including designating multiple regions of a substrate, providing a precursor to at least a first region of the multiple regions, and providing a plasma to the first region to deposit a first material on the first region formed using the first precursor, wherein the first material is different from a second material formed on a second region of the substrate.
    Type: Application
    Filed: December 27, 2011
    Publication date: April 26, 2012
    Applicant: Intermolecular
    Inventors: Sunil Shanker, Tony Chiang
  • Publication number: 20120090545
    Abstract: A combinatorial processing chamber and method are provided. In the method a fluid volume flows over a surface of a substrate with differing portions of the fluid volume having different constituent components to concurrently expose segregated regions of the substrate to a mixture of the constituent components that differ from constituent components to which adjacent regions are exposed. Differently processed segregated regions are generated through the multiple flowings.
    Type: Application
    Filed: December 21, 2011
    Publication date: April 19, 2012
    Applicant: Intermolecular, Inc.
    Inventors: Tony P. Chiang, Sunil Shanker, Chi-I Lang
  • Publication number: 20120094503
    Abstract: Combinatorial plasma enhanced deposition techniques are described, including designating multiple regions of a substrate, providing a precursor to at least a first region of the multiple regions, and providing a plasma to the first region to deposit a first material on the first region formed using the first precursor, wherein the first material is different from a second material formed on a second region of the substrate.
    Type: Application
    Filed: December 22, 2011
    Publication date: April 19, 2012
    Applicant: Intermolecular, Inc.
    Inventors: Sunil Shanker, Tony Chiang
  • Publication number: 20120094034
    Abstract: Combinatorial plasma enhanced deposition techniques are described, including designating multiple regions of a substrate, providing a precursor to at least a first region of the multiple regions, and providing a plasma to the first region to deposit a first material on the first region formed using the first precursor, wherein the first material is different from a second material formed on a second region of the substrate.
    Type: Application
    Filed: December 22, 2011
    Publication date: April 19, 2012
    Applicant: Intermolecular, Inc.
    Inventors: Sunil Shanker, Tony Chiang
  • Patent number: 8153535
    Abstract: Combinatorial plasma enhanced deposition techniques are described, including designating multiple regions of a substrate, providing a precursor to at least a first region of the multiple regions, and providing a plasma to the first region to deposit a first material on the first region formed using the first precursor, wherein the first material is different from a second material formed on a second region of the substrate.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: April 10, 2012
    Inventors: Sunil Shanker, Tony P. Chiang
  • Patent number: 8148273
    Abstract: Combinatorial plasma enhanced deposition techniques are described, including designating multiple regions of a substrate, providing a precursor to at least a first region of the multiple regions, and providing a plasma to the first region to deposit a first material on the first region formed using the first precursor, wherein the first material is different from a second material formed on a second region of the substrate.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: April 3, 2012
    Inventors: Sunil Shanker, Tony P. Chiang
  • Publication number: 20120077338
    Abstract: Combinatorial plasma enhanced deposition techniques are described, including designating multiple regions of a substrate, providing a precursor to at least a first region of the multiple regions, and providing a plasma to the first region to deposit a first material on the first region formed using the first precursor, wherein the first material is different from a second material formed on a second region of the substrate.
    Type: Application
    Filed: December 6, 2011
    Publication date: March 29, 2012
    Applicant: Intermolecular, Inc.
    Inventors: Sunil Shanker, Tony Chiang
  • Patent number: 8143092
    Abstract: Resistive switching nonvolatile memory elements are provided. A metal-containing layer and an oxide layer for a memory element can be heated using rapid thermal annealing techniques. During heating, the oxide layer may decompose and react with the metal-containing layer. Oxygen from the decomposing oxide layer may form a metal oxide with metal from the metal-containing layer. The resulting metal oxide may exhibit resistive switching for the resistive switching memory elements.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: March 27, 2012
    Inventors: Pragati Kumar, Sean Barstow, Sunil Shanker, Tony Chiang
  • Publication number: 20120061799
    Abstract: This disclosure provides (a) methods of making an oxide layer (e.g., a dielectric layer) based on yttrium and titanium, to have a high dielectric constant and low leakage characteristic and (b) related devices and structures. An oxide layer having both yttrium and titanium may be fabricated either as an amorphous oxide or as an alternating series of monolayers. In several embodiments, the oxide is characterized by a yttrium contribution to total metal that is specifically controlled. The oxide layer can be produced as the result of a reactive process, if desired, via either a PVD process or, alternatively, via an atomic layer deposition process that employs specific precursor materials to allow for a common process temperature window for both titanium and yttrium reactions.
    Type: Application
    Filed: October 8, 2010
    Publication date: March 15, 2012
    Inventors: Imran Hashim, Indranil De, Tony Chiang, Edward Haywood, Hanhong Chen, Nobi Fuchigami, Pragati Kumar, Sandra Malhotra, Sunil Shanker