Patents by Inventor SuPing Lyu

SuPing Lyu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210030937
    Abstract: Apparatuses, systems, and methods for the performance of kidney replacement therapy having or using a dialyzer, control components, sorbent cartridge, and fluid reservoirs configured to be of a weight and size suitable to be worn or carried by an individual requiring treatment are disclosed. The system has a controlled compliance dialysis circuit, where a control pump controls the bi-directional movement of fluid across a dialysis membrane. A first sorbent cartridge is provided for use in a portable treatment module having activated carbon and zirconium oxide. The system also provides for the monitoring of an inlet and outlet conductivity of a sorbent cartridge containing urease to provide a facility to quantify or monitor the removal of urea by a detachable urea removal module.
    Type: Application
    Filed: October 11, 2020
    Publication date: February 4, 2021
    Applicant: Medtronic, Inc.
    Inventors: Thomas D. Kelly, SuPing Lyu, Bryant J. Pudil, Thomas E. Meyer
  • Publication number: 20210008265
    Abstract: Methods for monitoring patient parameters and blood fluid removal system parameters include identifying those system parameters that result in improved patient parameters or in worsened patient parameters. By comparing the patient's past responses to system parameters or changes in system parameters, a blood fluid removal system may be able to avoid future use of parameters that may harm the patient and may be able to learn which parameters are likely to be most effective in treating the patient in a blood fluid removal session.
    Type: Application
    Filed: September 28, 2020
    Publication date: January 14, 2021
    Inventors: Martin Gerber, John Burnes, SuPing Lyu, VenKatesh R. Manda, Bryant Pudil
  • Patent number: 10882945
    Abstract: A modified polyisobutylene-based polymer, method of making, and a medical device that includes such polymer, wherein the modified polyisobutylene-based polymer includes urethane, urea, or urethane-urea groups, hard segments, and soft segments, wherein the soft segments comprise phenoxy-containing polyisobutylene residues, and the hard segments include diisocyanate residues and optionally chain extender residues.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: January 5, 2021
    Assignee: Medtronic, Inc.
    Inventors: Kimberly A. Chaffin, Xiangji Chen, Matthew Jolly, SuPing Lyu, Peter L. Thor, Darrel F. Untereker, Zhaoxu Wang
  • Patent number: 10857277
    Abstract: Apparatuses, systems, and methods for the performance of kidney replacement therapy having or using a dialyzer, control components, sorbent cartridge, and fluid reservoirs configured to be of a weight and size suitable to be worn or carried by an individual requiring treatment are disclosed. The system has a controlled compliance dialysis circuit, where a control pump controls the bi-directional movement of fluid across a dialysis membrane. A first sorbent cartridge is provided for use in a portable treatment module having activated carbon and zirconium oxide. The system also provides for the monitoring of an inlet and outlet conductivity of a sorbent cartridge containing urease to provide a facility to quantify or monitor the removal of urea by a detachable urea removal module.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: December 8, 2020
    Assignee: Medtronic, Inc.
    Inventors: Thomas D. Kelly, SuPing Lyu, Bryant J. Pudil, Thomas E. Meyer
  • Publication number: 20200354514
    Abstract: A method for preparing tyrosine derived polyarylates includes combining a desaminotyrosyl-tyrosine ethyl ester, a desaminotyrosyl-tyrosine benzylester, succinic acid and a catalyst in a flask to produce a first mixture. Methylene chloride is added to the first mixture to produce a first suspension. Diisopropylcarbodiimide (DIPC) is added to the first mixture to produce a first solution. The first solution is added to a non-solvent to produce a precipitate. The precipitate is dissolved in methylene chloride to form a polymer solution. The polymer solution is blended with a slurry to produce polymer shreds. The polymer shreds are blended with a second slurry to produce a tyrosine derived polyarylate.
    Type: Application
    Filed: July 23, 2020
    Publication date: November 12, 2020
    Applicant: MEDTRONIC, INC.
    Inventors: SATISH PULAPURA, FATIMA BUEVICH, XIANGJI CHEN, SUPING LYU
  • Publication number: 20200330674
    Abstract: Systems and methods for the performance of kidney replacement therapy having or using a dialyzer, control components, sorbent cartridge and fluid reservoirs configured to be of a weight and size suitable to be worn or carried by an individual requiring treatment are disclosed. The system for performing kidney replacement therapy has a controlled compliance dialysis circuit, where a control pump controls the bi-directional movement of fluid across a dialysis membrane. The dialysis circuit and an extracorporeal circuit for circulating blood are in fluid communication through the dialysis membrane. The flux of fluid moving between the extracorporeal circuit and the dialysis circuit is modified by the rate at which the control pump is operating such that a rate of ultrafiltration and convective clearance can be controlled. The system provides for the monitoring of an inlet and outlet conductivity of the sorbent cartridge to provide a facility to quantify or monitor the removal of urea by the sorbent cartridge.
    Type: Application
    Filed: June 22, 2020
    Publication date: October 22, 2020
    Inventors: Thomas D. Kelly, SuPing Lyu, Bryant J. Pudil, Thomas E. Meyer
  • Patent number: 10793670
    Abstract: A method for preparing tyrosine derived polyarylates includes combining a desaminotyrosyl-tyrosine ethyl ester, a desaminotyrosyl-tyrosine benzylester, succinic acid and a catalyst in a flask to produce a first mixture. Methylene chloride is added to the first mixture to produce a first suspension. Diisopropylcarbodiimide (DIPC) is added to the first mixture to produce a first solution. The first solution is added to a non-solvent to produce a precipitate. The precipitate is dissolved in methylene chloride to form a polymer solution. The polymer solution is blended with a slurry to produce polymer shreds. The polymer shreds are blended with a second slurry to produce a tyrosine derived polyarylate.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: October 6, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: Satish Pulapura, Fatima Buevich, Xiangji Chen, Suping Lyu
  • Publication number: 20200306439
    Abstract: Systems and methods for the performance of kidney replacement therapy having or using a dialyzer, control components, sorbent cartridge and fluid reservoirs configured to be of a weight and size suitable to be worn or carried by an individual requiring treatment are disclosed. The system for performing kidney replacement therapy has a controlled compliance dialysis circuit, where a control pump controls the bi-directional movement of fluid across a dialysis membrane. The dialysis circuit and an extracorporeal circuit for circulating blood are in fluid communication through the dialysis membrane. The flux of fluid moving between the extracorporeal circuit and the dialysis circuit is modified by the rate at which the control pump is operating such that a rate of ultrafiltration and convective clearance can be controlled. The system provides for the monitoring of an inlet and outlet conductivity of the sorbent cartridge to provide a facility to quantify or monitor the removal of urea by the sorbent cartridge.
    Type: Application
    Filed: May 19, 2020
    Publication date: October 1, 2020
    Inventors: Thomas D. Kelly, SuPing Lyu, Bryant J. Pudil, Thomas E. Meyer
  • Patent number: 10767006
    Abstract: A method for hydrogenating tyrosine derived polyarylates includes dissolving a second polyarylate with DMF in a flask to produce a first solution. A catalyst is added to the first solution to produce a polymer solution. The polymer solution is filtered through a Celite bed to produce a filtrate. The filtrate is added to water and stirred to precipitate the polyarylate.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: September 8, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: Satish Pulapura, Dan Thanh Le, Xiangji Chen, Suping Lyu, Fatima Buevich
  • Patent number: 10722636
    Abstract: Systems and methods for the performance of kidney replacement therapy having or using a dialyzer, control components, sorbent cartridge and fluid reservoirs configured to be of a weight and size suitable to be worn or carried by an individual requiring treatment are disclosed. The system for performing kidney replacement therapy has a controlled compliance dialysis circuit, where a control pump controls the bi-directional movement of fluid across a dialysis membrane. The dialysis circuit and an extracorporeal circuit for circulating blood are in fluid communication through the dialysis membrane. The flux of fluid moving between the extracorporeal circuit and the dialysis circuit is modified by the rate at which the control pump is operating such that a rate of ultrafiltration and convective clearance can be controlled. The system provides for the monitoring of an inlet and outlet conductivity of the sorbent cartridge to provide a facility to quantify or monitor the removal of urea by the sorbent cartridge.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: July 28, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: Thomas D. Kelly, SuPing Lyu, Bryant J. Pudil, Thomas E. Meyer
  • Patent number: 10695481
    Abstract: Systems and methods for the performance of kidney replacement therapy having or using a dialyzer, control components, sorbent cartridge and fluid reservoirs configured to be of a weight and size suitable to be worn or carried by an individual requiring treatment are disclosed. The system for performing kidney replacement therapy has a controlled compliance dialysis circuit, where a control pump controls the bi-directional movement of fluid across a dialysis membrane. The dialysis circuit and an extracorporeal circuit for circulating blood are in fluid communication through the dialysis membrane. The flux of fluid moving between the extracorporeal circuit and the dialysis circuit is modified by the rate at which the control pump is operating such that a rate of ultrafiltration and convective clearance can be controlled. The system provides for the monitoring of an inlet and outlet conductivity of the sorbent cartridge to provide a facility to quantify or monitor the removal of urea by the sorbent cartridge.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: June 30, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: Thomas D. Kelly, SuPing Lyu, Bryant J. Pudil, Thomas E. Meyer
  • Patent number: 10442757
    Abstract: A method for preparing diphenol compounds includes adding a hydroxyphenyl carboxylic acid, a tyrosine ethyl ester, hydroxybenzotriazole hydrate and a solvent and stirring to produce a first solution. EDCI HCl is added to the first solution to produce a first mixture. Ethyl acetate is added to the first mixture to produce a second mixture. The second mixture is added to sodium chloride to produce a third mixture having layer separation. An aqueous layer is removed from the third mixture. The third mixture is extracted with reagents after the aqueous layer has been removed from the third mixture to produce a fourth mixture. Magnesium sulfate is added to the fourth mixture to produce a fifth mixture. The fifth mixture is filtered to produce filtrate. The filtrate is concentrated. Crystallization of the concentrated filtrate is induced. Methylene chloride is added to the crystallized filtrate to produce a solid product.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: October 15, 2019
    Assignee: Medtronic, Inc.
    Inventors: Satish Pulapura, Fatima Buevich, Xiangji Chen, Suping Lyu
  • Publication number: 20190292302
    Abstract: A modified polyisobutylene-based polymer, method of making, and a medical device that includes such polymer, wherein the modified polyisobutylene-based polymer includes urethane, urea, or urethane-urea groups, hard segments, and soft segments, wherein the soft segments comprise phenoxy-containing polyisobutylene residues, and the hard segments include diisocyanate residues and optionally chain extender residues.
    Type: Application
    Filed: March 20, 2019
    Publication date: September 26, 2019
    Inventors: Kimberly A. CHAFFIN, Xiangji CHEN, Matthew JOLLY, SuPing LYU, Peter L. THOR, Darrel F. UNTEREKER, Zhaoxu WANG
  • Publication number: 20190292327
    Abstract: A poly(ether-carbonate)-based polymer and a medical device that includes such polymer, wherein the poly(ether-carbonate)-based polymer includes urethane, urea, or urethane-urea groups, hard segments, and soft segments, wherein the soft segments include poly(ether-carbonate) residues and at least one of polyisobutylene (PIB) residues and hydrogenated polybutadiene residues, and the hard segments include diisocyanate residues and optionally chain extender residues.
    Type: Application
    Filed: March 20, 2019
    Publication date: September 26, 2019
    Inventors: Kimberly A. CHAFFIN, Xiangji CHEN, Matthew JOLLY, SuPing LYU, Peter L. THOR, Darrel F. UNTEREKER, Zhaoxu WANG
  • Patent number: 10406268
    Abstract: Monitoring of the performance of a blood fluid removal medium of a blood fluid removal device includes monitoring of condition, such as fluid flow rate or concentration of blood waste product, downstream of the medium. Upstream monitoring of the condition may also be performed to enhance the ability to determine whether the blood fluid removal medium is performing within predetermined ranges.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: September 10, 2019
    Assignee: Medtronic, Inc.
    Inventors: Martin Gerber, Suping Lyu, Bryant Pudil
  • Patent number: 10384050
    Abstract: An implantable medical leads has a conductor that includes one or more metal wires and one or more carbon nanotube wires extending in substantially the same direction as the one or more metal wires. Such conductors may result in less MRI-induced heating at electrodes of leads than conductors that do not contain carbon nanotubes.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: August 20, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Mallika Kamarajugadda, Mark Breyen, Suping Lyu, Bernard Q. Li, Qin Zhang, Jacob Popp
  • Patent number: 10293092
    Abstract: Methods include monitoring indicators of blood pH or blood electrolyte levels during a blood fluid removal session and adjusting concentrations of pH buffers or electrolytes in dialysate or replacement fluid used during the session based on the monitored indicators. Blood fluid removal systems may employ sensors that monitor blood pH or electrolyte levels to adjust the fluid parameters during a blood fluid removal session.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: May 21, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Martin Gerber, John Burnes, Suping Lyu, VenKatesh R. Manda, Bryant Pudil
  • Publication number: 20190111186
    Abstract: A medical device, a method for preparation thereof, and use thereof are provided. The medical device comprises a thermoplastic elastomer that is composed of soft segments and hard segments. The method for preparing a medical device comprising a thermoplastic elastomer, comprises forming the thermoplastic elastomer into tubing or other shapes via extrusion, molding, or coating, assembling the tubing or other shapes with other parts including: cables, coils, coated cables, or coated coils, and bonding the tubing, cables, or coils with other components including: other tubing components, cables, coils, sleeves, electrical pulse generator, defibrillation shock generator, electrodes, sensors, or drug release components. The medical device is used for correcting cardiac rhythm, defibrillating, assisting hearts, sensing, stimulating neurological systems, gastrointestinal system, or skeletomuscular tissues or organs.
    Type: Application
    Filed: March 2, 2017
    Publication date: April 18, 2019
    Inventors: Suping LYU, XiangJi CHEN, Jing CHEN, Haining NA, Jin ZHU
  • Publication number: 20190112411
    Abstract: Disclosed is a segmented thermoplastic elastomer that can be a polyurethane, polyurea, or polyurethane-urea comprising soft segments and hard segments, wherein the soft segments are made of polyolefin diols or polyolefin diamine that may have 0 to 1000 carbon atoms in the main chain, wherein each carbon atom in the main chain may have 0 to 2 side chains and each side chain may have 0 to 30 carbon atoms, the hard segment is made of a diisocyante and a chain extender, the hard segments make up 10-60% of the elastomer and the soft segments make up the rest, the number-average molecular weight of the elastomer is 5×103-1000×103 g/mol, the ultimate elongation of the elastomer is 100-1000%, the Young's modulus is 1 to 3,000 MPa, and the ultimate tensile strength is 10-100 MPa. Also disclosed are a method for preparing the segmented thermoplastic elastomer and use of segmented thermoplastic elastomer.
    Type: Application
    Filed: March 2, 2017
    Publication date: April 18, 2019
    Inventors: Jing CHEN, Haining NA, Jin ZHU, Suping LYU, XiangJi CHEN
  • Patent number: 10179198
    Abstract: Methods include monitoring indicators of blood pH or blood electrolyte levels during a blood fluid removal session and adjusting concentrations of pH buffers or electrolytes in dialysate or replacement fluid used during the session based on the monitored indicators. Blood fluid removal systems may employ sensors that monitor blood pH or electrolyte levels to adjust the fluid parameters during a blood fluid removal session.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: January 15, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Martin Gerber, John Burnes, Suping Lyu, VenKatesh R. Manda, Bryant Pudil