Patents by Inventor Ta-Chun Lin

Ta-Chun Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11349002
    Abstract: A first source/drain structure is disposed over a substrate. A second source/drain structure is disposed over the substrate. An isolation structure is disposed between the first source/drain structure and the second source/drain structure. The first source/drain structure and a first sidewall of the isolation structure form a first interface that is substantially linear. The second source/drain structure and a second sidewall of the isolation structure form a second interface that is substantially linear. A first source/drain contact surrounds the first source/drain structure in multiple directions. A second source/drain contact surrounds the second source/drain structure in multiple directions. The isolation structure is disposed between the first source/drain contact and the second source/drain contact.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: May 31, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ta-Chun Lin, Kuan-Lin Yeh, Chun-Jun Lin, Kuo-Hua Pan, Mu-Chi Chiang, Jhon Jhy Liaw
  • Publication number: 20220157938
    Abstract: Semiconductor structures are provided. The semiconductor structure includes a substrate and nanostructures formed over the substrate. The semiconductor structure further includes a gate structure surrounding the nanostructures and a source/drain structure attached to the nanostructures. The semiconductor structure further includes a contact formed over the source/drain structure and extending into the source/drain structure.
    Type: Application
    Filed: February 7, 2022
    Publication date: May 19, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ta-Chun LIN, Kuo-Hua PAN, Jhon-Jhy LIAW, Chao-Ching CHENG, Hung-Li CHIANG, Shih-Syuan HUANG, Tzu-Chiang CHEN, I-Sheng CHEN, Sai-Hooi YEONG
  • Publication number: 20220149039
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a first fin structure and an adjacent second fin structure protruding from the semiconductor substrate and an isolation structure formed in the semiconductor substrate and in direct contact with the first fin structure and the second fin structure. The first fin structure and the second fin structure each include a first portion protruding above a top surface of the isolation structure, a second portion in direct contact with a bottom surface of the first portion, and a third portion extending from a bottom of the second portion. A top width of the third portion is different than a bottom width of the third portion and a bottom width of the second portion.
    Type: Application
    Filed: January 25, 2022
    Publication date: May 12, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ta-Chun LIN, Tien-Shao CHUANG, Kuang-Cheng TAI, Chun-Hung CHEN, Chih-Hung HSIEH, Kuo-Hua PAN, Jhon-Jhy LIAW
  • Patent number: 11315924
    Abstract: A semiconductor device includes a first active region and a second active region disposed over a substrate. A first source/drain component is grown on the first active region. A second source/drain component is grown on the second active region. An interlayer dielectric (ILD) is disposed around the first source/drain component and the second source/drain component. An isolation structure extends vertically through the ILD. The isolation structure separates the first source/drain component from the second source/drain component.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: April 26, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ta-Chun Lin, Kuan-Lin Yeh, Chun-Jun Lin, Kuo-Hua Pan, Mu-Chi Chiang
  • Patent number: 11302692
    Abstract: A semiconductor device includes a substrate; an I/O device over the substrate; and a core device over the substrate. The I/O device includes a first gate structure having an interfacial layer; a first high-k dielectric stack over the interfacial layer; and a conductive layer over and in physical contact with the first high-k dielectric stack. The core device includes a second gate structure having the interfacial layer; a second high-k dielectric stack over the interfacial layer; and the conductive layer over and in physical contact with the second high-k dielectric stack. The first high-k dielectric stack includes the second high-k dielectric stack and a third dielectric layer.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: April 12, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ta-Chun Lin, Kuo-Hua Pan, Jhon Jhy Liaw, Shien-Yang Wu
  • Publication number: 20220102509
    Abstract: A first source/drain structure is disposed over a substrate. A second source/drain structure is disposed over the substrate. An isolation structure is disposed between the first source/drain structure and the second source/drain structure. The first source/drain structure and a first sidewall of the isolation structure form a first interface that is substantially linear. The second source/drain structure and a second sidewall of the isolation structure form a second interface that is substantially linear. A first source/drain contact surrounds the first source/drain structure in multiple directions. A second source/drain contact surrounds the second source/drain structure in multiple directions. The isolation structure is disposed between the first source/drain contact and the second source/drain contact.
    Type: Application
    Filed: September 25, 2020
    Publication date: March 31, 2022
    Inventors: Ta-Chun Lin, Kuan-Lin Yeh, Chun-Jun Lin, Kuo-Hua Pan, Mu-Chi Chiang, Jhon Jhy Liaw
  • Patent number: 11251069
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming first and second well regions with different conductivity types in a semiconductor substrate. A well interface is formed between the first and second well regions. The method also includes patterning the semiconductor substrate to form a first fin structure in the first well region, a second fin structure in the second well region, and a first trench between the first and second fin structures. The first trench exposes the well interface in the semiconductor substrate. The method further includes forming insulating spacers on opposite sidewalls of the first trench and etching the semiconductor substrate below the first trench using the insulating spacers as an etch mask, to form a second trench below the first trench. In addition, the method includes filling the first and second trenches with an insulating material.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: February 15, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ta-Chun Lin, Tien-Shao Chuang, Kuang-Cheng Tai, Chun-Hung Chen, Chih-Hung Hsieh, Kuo-Hua Pan, Jhon-Jhy Liaw
  • Patent number: 11245034
    Abstract: A semiconductor device includes a substrate, first and second source/drain features, and a dielectric plug. The substrate has a semiconductor fin. The first and second source/drain features are over first and second portions of the semiconductor fin, respectively. The dielectric plug is at least partially embedded in a third portion of the semiconductor fin. The third portion is in between the first and second portions of the semiconductor fin. The dielectric plug includes a first dielectric material and a second dielectric material different from the first dielectric material.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: February 8, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuei-Ming Chang, Ta-Chun Lin, Rei-Jay Hsieh, Yung-Chih Wang, Wen-Huei Guo, Kuo-Hua Pan, Buo-Chin Hsu
  • Patent number: 11245005
    Abstract: Methods for forming semiconductor structures are provided. The method includes alternately stacking first semiconductor layers and second semiconductor layers over a substrate and patterning the first semiconductor layers and the second semiconductor layers to form a first fin structure. The method further includes forming a first trench in the first fin structure and forming a first source/drain structure in the first trench. The method further includes partially removing the first source/drain structure to form a second trench in the first source/drain structure and forming a first contact in the second trench.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: February 8, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ta-Chun Lin, Kuo-Hua Pan, Jhon-Jhy Liaw, Chao-Ching Cheng, Hung-Li Chiang, Shih-Syuan Huang, Tzu-Chiang Chen, I-Sheng Chen, Sai-Hooi Yeong
  • Patent number: 11239339
    Abstract: A semiconductor structure includes a first active region over a substrate and extending along a first direction, a gate structure over the first active region and extending along a second direction substantially perpendicular to the first direction, a gate-cut feature abutting an end of the gate structure, and a channel isolation feature extending along the second direction and between the first active region and a second active region. The gate structure includes a metal electrode in direct contact with the gate-cut feature. The channel isolation feature includes a liner on sidewalls extending along the second direction and a dielectric fill layer between the sidewalls. The gate-cut feature abuts an end of the channel isolation feature and the dielectric fill layer is in direct contact with the gate-cut feature.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: February 1, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ta-Chun Lin, Jhon Jhy Liaw, Kuo-Hua Pan
  • Publication number: 20210408000
    Abstract: A semiconductor device includes a first active region and a second active region disposed over a substrate. A first source/drain component is grown on the first active region. A second source/drain component is grown on the second active region. An interlayer dielectric (ILD) is disposed around the first source/drain component and the second source/drain component. An isolation structure extends vertically through the ILD. The isolation structure separates the first source/drain component from the second source/drain component.
    Type: Application
    Filed: June 30, 2020
    Publication date: December 30, 2021
    Inventors: Ta-Chun Lin, Kuan-Lin Yeh, Chun-Jun Lin, Kuo-Hua Pan, Mu-Chi Chiang
  • Publication number: 20210384311
    Abstract: A method of manufacturing a device includes forming a plurality of stacks of alternating layers on a substrate, constructing a plurality of nanosheets from the plurality of stacks of alternating layers, and forming a plurality of gate dielectrics over the plurality of nanosheets, respectively. The method allows for the modulation of nanosheet width, thickness, spacing, and stack number and can be employed on single substrates. This design flexibility provides for design optimization over a wide tuning range of circuit performance and power usage.
    Type: Application
    Filed: August 23, 2021
    Publication date: December 9, 2021
    Inventors: Shien-Yang Wu, Ta-Chun Lin, Kuo-Hua Pan
  • Patent number: 11152488
    Abstract: Semiconductor device and the manufacturing method thereof are disclosed herein. An exemplary semiconductor device comprises a nanostructure disposed over a substrate, wherein the nanostructure includes a plurality of semiconductor layers separated vertically from each other and a dummy pattern layer including dielectric material disposed over and separated vertically from a top semiconductor layer of the plurality of semiconductor layers. The exemplary semiconductor device also comprises a gate structure disposed over a channel region, wherein the gate structure wraps around each of the plurality of semiconductor layers and the dummy pattern layer of the nanostructure.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: October 19, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ta-Chun Lin, Kuo-Hua Pan, Jhon Jhy Liaw
  • Publication number: 20210305084
    Abstract: A semiconductor structure includes a semiconductor fin protruding from a substrate, an S/D feature disposed over the semiconductor fin, and a first dielectric fin and a second dielectric fin disposed over the substrate, where the semiconductor fin is disposed between the first dielectric fin and the second dielectric fin, where a first air gap is enclosed by a first sidewall of the epitaxial S/D feature and the first dielectric fin, and where a second air gap is enclosed by a second sidewall of the epitaxial S/D feature and the second dielectric fin.
    Type: Application
    Filed: January 15, 2021
    Publication date: September 30, 2021
    Inventors: Ta-Chun Lin, Kuo-Hua Pan, Jhon Jhy Liaw
  • Patent number: 11133224
    Abstract: A method for forming a semiconductor structure is provided. The method for forming the semiconductor structure includes forming a first fin structure with a first composition and a second fin structure with a second composition, oxidizing the first fin structure to form a first oxide layer and oxidizing the second fin structure to form a second oxide layer, removing the second oxide layer formed on the second fin structure, oxidizing the second fin structure to form a third oxide layer over the second fin structure, and forming a first metal gate electrode layer over the first oxide layer and a second metal gate electrode layer over the third oxide layer.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: September 28, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Che Chiang, Yu-San Chien, Ta-Chun Lin, Chun-Sheng Liang, Kuo-Hua Pan
  • Publication number: 20210272852
    Abstract: A structure includes a fin on a substrate; first and second gate stacks over the fin and including first and second gate dielectric layers and first and second gate electrodes respectively; and a dielectric gate over the fin and between the first and second gate stacks. The dielectric gate includes a dielectric material layer on a third gate dielectric layer. In a cross-sectional view cut along a direction parallel to a lengthwise direction of the fin and offset from the fin, the first gate dielectric layer forms a first U shape, the third gate dielectric layer forms a second U shape, a portion of the first gate electrode is disposed within the first U shape, a portion of the dielectric material layer is disposed within the second U shape, and a portion of an interlayer dielectric layer is disposed laterally between the first and the second U shapes.
    Type: Application
    Filed: May 3, 2021
    Publication date: September 2, 2021
    Inventors: Ta-Chun Lin, Buo-Chin Hsu, Kuo-Hua Pan, Jhon Jhy Liaw, Chih-Yung Lin
  • Patent number: 11101359
    Abstract: A method of manufacturing a device includes forming a plurality of stacks of alternating layers on a substrate, constructing a plurality of nanosheets from the plurality of stacks of alternating layers, and forming a plurality of gate dielectrics over the plurality of nanosheets, respectively. The method allows for the modulation of nanosheet width, thickness, spacing, and stack number and can be employed on single substrates. This design flexibility provides for design optimization over a wide tuning range of circuit performance and power usage.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: August 24, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shien-Yang Wu, Ta-Chun Lin, Kuo-Hua Pan
  • Publication number: 20210225839
    Abstract: A semiconductor device includes a substrate; an I/O device over the substrate; and a core device over the substrate. The I/O device includes a first gate structure having an interfacial layer; a first high-k dielectric stack over the interfacial layer; and a conductive layer over and in physical contact with the first high-k dielectric stack. The core device includes a second gate structure having the interfacial layer; a second high-k dielectric stack over the interfacial layer; and the conductive layer over and in physical contact with the second high-k dielectric stack. The first high-k dielectric stack includes the second high-k dielectric stack and a third dielectric layer.
    Type: Application
    Filed: January 16, 2020
    Publication date: July 22, 2021
    Inventors: Ta-Chun Lin, Kuo-Hua Pan, Jhon Jhy Liaw, Shien-Yang Wu
  • Publication number: 20210202497
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a first device formed over a substrate, and the first device includes a first fin structure. The semiconductor device structure also includes a second device formed over or below the first device, and the second device includes a plurality of second nanostructures stacked in a vertical direction.
    Type: Application
    Filed: April 2, 2020
    Publication date: July 1, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ta-Chun LIN, Kuo-Hua PAN
  • Patent number: 11037831
    Abstract: A semiconductor structure includes a fin active region extruded from a semiconductor substrate; and a gate stack disposed on the fin active region. The gate stack includes a gate dielectric layer and a gate electrode disposed on the gate dielectric layer. The gate dielectric layer includes a first dielectric material. The semiconductor structure further includes a dielectric gate of a second dielectric material disposed on the fin active region. The gate dielectric layer extends from a sidewall of the gate electrode to a sidewall of the dielectric gate. The second dielectric material is different from the first dielectric material in composition.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: June 15, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ta-Chun Lin, Buo-Chin Hsu, Kuo-Hua Pan, Jhon Jhy Liaw, Chih-Yung Lin