Patents by Inventor Takao Yonehara

Takao Yonehara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100197054
    Abstract: A method for manufacturing a light emitting device according to the present invention has the steps of: preparing a first member which has an emission layer on a substrate having a compound semiconductor layer through an etch stop layer and a sacrifice layer; forming a bonded structure by bonding the first member on a second member including a silicon layer so that the emission layer is positioned in the inner side; providing a through groove in the substrate so that the etch stop layer is exposed, by etching the first member from the reverse side of the emission layer; and removing the substrate having the through groove provided therein from the bonded structure by etching the sacrifice layer.
    Type: Application
    Filed: October 1, 2008
    Publication date: August 5, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Takao Yonehara
  • Publication number: 20100159678
    Abstract: Germanium circuit-type structures are facilitated. In one example embodiment, a multi-step growth and anneal process is implemented to grow Germanium (Ge) containing material, such as heteroepitaxial-Germanium, on a substrate including Silicon (Si) or Silicon-containing material. In certain applications, defects are generally confined near a Silicon/Germanium interface, with defect threading to an upper surface of the Germanium containing material generally being inhibited. These approaches are applicable to a variety of devices including Germanium MOS capacitors, pMOSFETs and optoelectronic devices.
    Type: Application
    Filed: March 8, 2010
    Publication date: June 24, 2010
    Applicants: CANON KABUSHIKI KAISHA, The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ammar Munir Nayfeh, Chi On Chui, Krishna C. Saraswat, Takao Yonehara
  • Patent number: 7732238
    Abstract: A solid-state image sensing apparatus having a three-dimensional structure whose manufacturing process can be simplified is provided. A solid-state image sensing apparatus formed by bonding a first member and a second member is provided. The first member has a first surface on the side of the bonding interface between the first member and the second member and a second surface on the opposite side of the bonding interface. The second member has a third surface on the bonding interface side and a fourth surface on the opposite side of the bonding interface. The first member includes photoelectric conversion elements which are formed on the first surface before the first member is bonded to the second member. The second member includes circuit elements which are formed on the third surface before bonding.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: June 8, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yoshinobu Sekiguchi, Takao Yonehara
  • Publication number: 20100110157
    Abstract: A method includes arranging a first bonding layer on a first functional region on a first substrate, or a region on a second substrate, bonding the first functional region to the second substrate through the first bonding layer, subjecting a first release layer to a first process to separate the first substrate from the first functional region at the first release layer, arranging a second bonding layer on a second functional region on the first substrate, or a region on a third substrate, bonding the second functional region to the second or third substrate through the second bonding layer, and subjecting a second release layer to a second process to separate the first substrate from the second functional region at the second release layer.
    Type: Application
    Filed: November 3, 2009
    Publication date: May 6, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Takao Yonehara, Yasuyoshi Takai
  • Publication number: 20100109023
    Abstract: A method includes placing a first bonding layer on at least one of a first functional region bonded on a release layer with a light releasable adhesive layer on a first substrate, and a transfer region on a second substrate; bonding the first functional region to the second substrate by the first bonding layer; irradiating the release layer with light with a light blocking member being provided to separate the first substrate from the first functional region at the release layer; placing a second bonding layer on at least one of a second functional region on the first substrate, and a transfer region on the release layer or a transfer region on a third substrate; bonding the second functional region to the second substrate or the third substrate by the second bonding layer; and separating the first substrate from the second functional region at the release layer.
    Type: Application
    Filed: November 3, 2009
    Publication date: May 6, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Takao Yonehara
  • Publication number: 20100109024
    Abstract: A method includes arranging a bonding layer of a predetermined thickness on at least one of a first functional region bonded on a release layer, which is capable of falling into a releasable condition when subjected to a process, on a first substrate, and a region, to which the first functional region is to be transferred, on a second substrate; bonding the first functional region to the second substrate through the bonding layer; and separating the first substrate from the first functional region at the release layer.
    Type: Application
    Filed: November 3, 2009
    Publication date: May 6, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Takao Yonehara, Yasuyoshi Takai
  • Publication number: 20100109019
    Abstract: A method includes: forming a first layer containing silicon oxide on a first substrate; partially removing the first layer to form an exposure portion on the first substrate; depositing amorphous gallium nitride system compound semiconductor on the first substrate with the exposure portion; evaporating the semiconductor on the first layer to form cores of the semiconductor on the exposure portion of the first substrate; forming an epitaxial layer of the semiconductor on the first substrate through increase in a size of the core, combination of the cores, crystal growth, formation of facets, bending of dislocation lines, transverse crystal growth onto the first layer, collision between adjoining crystal grains, combination of the transversely grown crystals, formation of dislocation networks, and formation of a flat surface of the semiconductor; and removing the epitaxial layer of the semiconductor on the exposure portion on the first substrate to form a separating groove.
    Type: Application
    Filed: November 3, 2009
    Publication date: May 6, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Takao Yonehara
  • Publication number: 20100097612
    Abstract: An information-acquiring device for acquiring information on an objective substance to be detected, which is provided with a sensing element that has a surface capable of fixing the objective substance to be detected thereon, and makes applied light change its wavelength characteristics in response to the fixed state of the objective substance to be detected onto the surface, a light source, and light-receiving means for receiving light emitted from the light source through the sensing element, has the light-receiving means and the light source arranged on the same substrate so that the light which has been emitted from the light source and has been transmitted through the sensing element can be led to the light-receiving means, and has means for varying the wavelength regions of each light incident on each of a plurality of the light-receiving means installed in an optical path from the light source to the light-receiving means.
    Type: Application
    Filed: December 18, 2009
    Publication date: April 22, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Norihiko Utsunomiya, Mitsuro Sugita, Satoru Nishiuma, Takao Yonehara
  • Patent number: 7659987
    Abstract: An information-acquiring device for acquiring information on an objective substance to be detected, which is provided with a sensing element that has a surface capable of fixing the objective substance to be detected thereon, and makes applied light change its wavelength characteristics in response to the fixed state of the objective substance to be detected onto the surface, a light source, and light-receiving means for receiving light emitted from the light source through the sensing element, has the light-receiving means and the light source arranged on the same substrate so that the light which has been emitted from the light source and has been transmitted through the sensing element can be led to the light-receiving means, and has means for varying the wavelength regions of each light incident on each of a plurality of the light-receiving means installed in an optical path from the light source to the light-receiving means.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: February 9, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Norihiko Utsunomiya, Mitsuro Sugita, Satoru Nishiuma, Takao Yonehara
  • Publication number: 20100026779
    Abstract: A novel semiconductor article manufacturing method and the like are provided. A method of manufacturing a semiconductor article having a compound semiconductor multilayer film formed on a semiconductor substrate includes: preparing a member including an etching sacrificial layer (1010), a compound semiconductor multilayer film (1020), an insulating film (2010), and a semiconductor substrate (2000) on a compound semiconductor substrate (1000), and having a first groove (2005) which passes through the semiconductor substrate and the insulating film, and a semiconductor substrate groove (1025) which is a second groove provided in the compound semiconductor multilayer film so as to be connected to the first groove, and bringing an etchant into contact with the etching sacrificial layer through the first groove and then the second groove and etching the etching sacrificial layer to separate the compound semiconductor substrate from the member.
    Type: Application
    Filed: October 25, 2007
    Publication date: February 4, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Takao Yonehara, Kenji Yamagata, Yoshinobu Sekiguchi, Kojiro Nishi
  • Publication number: 20090315965
    Abstract: An LED array having no insulating film between the LED structure and the reflector thereof is manufactured by forming a luminescent layer 1102 and a DBR layer 1103 on a first substrate 100 with an insulating layer 1101 interposed between them, patterning the DBR layer and the luminescent layer to make them show an islands-like profile, bonding the DBR layer and a second substrate 110 with an insulating layer 1111 interposed between them, and separating the first substrate and the luminescent layer from each other.
    Type: Application
    Filed: October 24, 2007
    Publication date: December 24, 2009
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Kenji Yamagata, Yoshinobu Sekiguchi, Takao Yonehara, Kojiro Nishi
  • Patent number: 7622363
    Abstract: A semiconductor substrate including a gallium arsenide layer is obtained by executing a step of preparing a first substrate having a separating layer constituted of germanium and a gallium arsenide layer on the separating layer, a step of preparing a bonded substrate by bonding the first substrate and a second substrate, and a step of dividing the bonded substrate at a portion of the separating layer.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: November 24, 2009
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takao Yonehara, Yoshinobu Sekiguci
  • Patent number: 7550305
    Abstract: An object of the present invention is to provide a method of forming a light-emitting element at a lower cost than a conventional cost with suppressing the deterioration of the substrate due to thermal distortion in comparison with a conventional method of recycling a substrate and further having an effect equal to that of the method of recycling a substrate.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: June 23, 2009
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kenji Yamagata, Takao Yonehara, Yoshinobu Sekiguchi, Kojiro Nishi
  • Publication number: 20090061604
    Abstract: Germanium circuit-type structures are facilitated. In one example embodiment, a multi-step growth and anneal process is implemented to grow Germanium (Ge) containing material, such as heteroepitaxial-Germanium, on a substrate including Silicon (Si) or Silicon-containing material. In certain applications, defects are generally confined near a Silicon/Germanium interface, with defect threading to an upper surface of the Germanium containing material generally being inhibited. These approaches are applicable to a variety of devices including Germanium MOS capacitors, pMOSFETs and optoelectronic devices.
    Type: Application
    Filed: August 26, 2008
    Publication date: March 5, 2009
    Applicants: CANON KABUSHIKI KAISHA, The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ammar Munir Nayfeh, Chi On Chui, Krishna C. Saraswat, Takao Yonehara
  • Publication number: 20090057693
    Abstract: A light-emitting element array can be manufactured without the separation of a metal reflection layer. The light-emitting element array includes a plurality of light-emitting element portions provided on a substrate, at least one space of the spaces between adjacent light-emitting element portions being electrically separated from each other, wherein the metal reflection layer is provided on the substrate and under the plurality of light-emitting element portions, and a resistive layer for electrical separation between the light-emitting element portions is provided between the plurality of light-emitting element portions and the metal reflection layer. The plurality of light-emitting element portions are divided into a plurality of blocks. Each of the blocks includes a plurality of light-emitting portions. The electrical separation between the light-emitting portions can be made as electrical separation between adjacent light-emitting element portions in adjacent and different blocks.
    Type: Application
    Filed: October 28, 2008
    Publication date: March 5, 2009
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Tetsuya Takeuchi, Makoto Koto, Kenji Yamagata, Yoshinobu Sekiguchi, Takao Yonehara
  • Patent number: 7495313
    Abstract: Germanium circuit-type structures are facilitated. In one example embodiment, a multi-step growth and anneal process is implemented to grow Germanium (Ge) containing material, such as heteroepitaxial-Germanium, on a substrate including Silicon (Si) or Silicon-containing material. In certain applications, defects are generally confined near a Silicon/Germanium interface, with defect threading to an upper surface of the Germanium containing material generally being inhibited. These approaches are applicable to a variety of devices including Germanium MOS capacitors, pMOSFETs and optoelectronic devices.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: February 24, 2009
    Assignees: Board of Trustees of the Leland Stanford Junior University, Canon Kabushiki Kaisha
    Inventors: Ammar Munir Nayfeh, Chi On Chui, Krishna C. Saraswat, Takao Yonehara
  • Patent number: 7491976
    Abstract: A light-emitting element array can be manufactured without the separation of a metal reflection layer. The light-emitting element array includes a plurality of light-emitting element portions provided on a substrate, at least one space of the spaces between adjacent light-emitting element portions being electrically separated from each other, wherein the metal reflection layer is provided on the substrate and under the plurality of light-emitting element portions, and a resistive layer for electrical separation between the light-emitting element portions is provided between the plurality of light-emitting element portions and the metal reflection layer. The plurality of light-emitting element portions are divided into a plurality of blocks. Each of the blocks includes a plurality of light-emitting portions. The electrical separation between the light-emitting portions can be made as electrical separation between adjacent light-emitting element portions in adjacent and different blocks.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: February 17, 2009
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tetsuya Takeuchi, Makoto Koto, Kenji Yamagata, Yoshinobu Sekiguchi, Takao Yonehara
  • Patent number: 7399693
    Abstract: This invention provides a semiconductor film manufacturing method using a new separation technique and applications thereof. The semiconductor film manufacturing method of this invention includes a separation layer forming a step of hetero-epitaxially growing a separation layer (2) on a seed substrate (1), a semiconductor film forming step of forming a semiconductor film (3) on the separation layer (2), and a separation step of separating, by using the separation layer (2), the semiconductor film (3) from a composite member (Ia) formed in the semiconductor film forming step.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: July 15, 2008
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yoshinobu Sekiguchi, Takao Yonehara, Makoto Koto, Masahiro Okuda, Tetsuya Shimada
  • Publication number: 20080102545
    Abstract: An object of the present invention is to provide a method of forming a light-emitting element at a lower cost than a conventional cost with suppressing the deterioration of the substrate due to thermal distortion in comparison with a conventional method of recycling a substrate and further having an effect equal to that of the method of recycling a substrate.
    Type: Application
    Filed: October 18, 2007
    Publication date: May 1, 2008
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Kenji YAMAGATA, Takao YONEHARA, Yoshinobu SEKIGUCHI, Kojiro NISHI
  • Publication number: 20080076201
    Abstract: A sensor which has high measuring sensitivity and is excellent in response is provided by forming a porous film in a sensitive section of a field-effect transistor. It comprises a porous body, which is formed on a sensitive section (here, a gate insulating film) of the field-effect transistor and has cylindrical pores which are formed almost perpendicularly to a substrate, and the field-effect transistor. It uses as a porous film a porous film which is made of a semiconductor material whose main component (except oxygen) is silicon, germanium, or a composite of silicon and germanium, or a porous film made of an insulation material whose main component is silicon oxide, which has pores perpendicular to the substrate.
    Type: Application
    Filed: November 27, 2007
    Publication date: March 27, 2008
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Kazuhiko Fukutani, Takao Yonehara, Hirokatsu Miyata, Youhei Ishida, Tohru Den