Patents by Inventor Takeshi Yamaguchi

Takeshi Yamaguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140209853
    Abstract: A plurality of first conductive layers are stacked at a predetermined pitch in a first direction perpendicular to a substrate. A memory layer is provided in common on side surfaces of the first conductive layers and functions as the memory cells. A second conductive layer comprises a first side surface in contact with side surfaces of the first conductive layers via the memory layer, the second conductive layer extending in the first direction. A width in a second direction of the first side surface at a first position is smaller than a width in the second direction of the first side surface at a second position lower than the first position. A thickness in the first direction of the first conductive layer at the first position is larger than a thickness in the first direction of the first conductive layer at the second position.
    Type: Application
    Filed: September 13, 2013
    Publication date: July 31, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Masaki YAMATO, Yasuhiro Nojiri, Shiegeki Kobayashi, Hiroyuki Fukumizu, Takeshi Yamaguchi
  • Publication number: 20140192585
    Abstract: Provided are resistive random access memory (ReRAM) cells, each having three or more resistive states and being capable of storing multiple bits of data, as well as methods of fabricating and operating such ReRAM cells. Such ReRAM cells or, more specifically, their resistive switching layer have wide range of resistive states and are capable of being very conductive (e.g., about 1 kOhm) in one state and very resistive (e.g., about 1 MOhm) in another state. In some embodiments, a resistance ratio between resistive states may be between 10 and 1,000 even up to 10,000. The resistive switching layers also allow establishing stable and distinct intermediate resistive states that may be assigned different data values. These layers may be configured to switching between their resistive states using fewer programming pulses than conventional systems by using specific materials, switching pluses, and resistive state threshold.
    Type: Application
    Filed: January 10, 2013
    Publication date: July 10, 2014
    Applicants: INTERMOLECULAR INC., SANDISK 3D LLC, KABUSHIKI KAISHA TOSHIBA
    Inventors: Imran Hashim, Ryan C. Clarke, Nan Lu, Tim Minvielle, Takeshi Yamaguchi
  • Publication number: 20140175363
    Abstract: Provided are methods of forming nonvolatile memory elements including resistance switching layers. A method involves diffusing oxygen from a precursor layer to one or more reactive electrodes by annealing. At least one electrode in a memory element is reactive, while another may be inert. The precursor layer is converted into a resistance switching layer as a result of this diffusion. The precursor layer may initially include a stoichiometric oxide that generally does not exhibit resistance switching characteristics until oxygen vacancies are created. Metals forming such oxides may be more electronegative than metals forming a reactive electrode. The reactive electrode may have substantially no oxygen at least prior to annealing. Annealing may be performed at 250-400° C. in the presence of hydrogen. These methods simplify process control and may be used to form nonvolatile memory elements including resistance switching layers less than 20 Angstroms thick.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Applicants: INTERMOLECULAR INC., SANDISK 3D LLC, KABUSHIKI KAISHA TOSHIBA
    Inventors: Mihir Tendulkar, Tim Minvielle, Yun Wang, Takeshi Yamaguchi
  • Publication number: 20140178049
    Abstract: This technology relates to an image processing apparatus, an image processing method, and a program, which enable easier addition of an effect to a moving image. In a portable terminal device, an ambient environmental sound and a voice uttered by a user are picked up by different sound pickup units when the moving image is shot. A keyword detecting unit detects a keyword determined in advance from the voice uttered by the user and an effect generating unit generates an image effect and a sound effect associated with the detected keyword. Then, an effect adding unit superposes the generated image effect on the shot moving image and synthesizes the generated sound effect with the environmental sound, thereby applying image effects and sound effects to the moving image. According to the portable terminal device, it is possible to easily add a desired effect to the moving image only by uttering the keyword while shooting the moving image. This technology may be applied to a mobile phone.
    Type: Application
    Filed: August 1, 2012
    Publication date: June 26, 2014
    Applicant: Sony Corporation
    Inventors: Nobuyuki Kihara, Yohei Sakuraba, Takeshi Yamaguchi, Yasuhiko Kato
  • Publication number: 20140175367
    Abstract: Provided are resistive random access memory (ReRAM) cells that include thin resistive switching layers. In some embodiments, the resistive switching layers have a thickness of less than about 50 Angstroms and even less than about 30 Angstroms. The resistive switching characteristics of such thin layers are maintained by controlling their compositions and using particular fabrication techniques. Specifically, low oxygen vacancy metal oxides, such as tantalum oxide, may be used. The concentration of oxygen vacancies may be less than 5 atomic percent. In some embodiments, the resistive switching layers also include nitrogen and. For example, compositions of some specific resistive switching layers may be represented by Ta2O5-XNY, where Y<(X?0.01). The resistive switching layers may be formed using Atomic Layer Deposition (ALD).
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Applicants: INTERMOLECULAR INC., SANDISK 3D LLC, KABUSHIKI KAISHA TOSHIBA
    Inventors: Mihir Tendulkar, Vidyut Gopal, Imran Hashim, Tim Minvielle, Yun Wang, Takeshi Yamaguchi
  • Publication number: 20140177315
    Abstract: A resistor array for multi-bit data storage without the need to increase the size of a memory chip or scale down the feature size of a memory cell contained within the memory chip is provided. The resistor array incorporates a number of discrete resistive elements to be selectively connected, in different series combinations, to at least one memory cell or memory device. In one configuration, by connecting each memory cell or device with at least one resistor array, a resistive switching layer found in the resistive switching memory element of the connected memory device is capable of being at multiple resistance states for storing multiple bits of digital information. During device programming operations, when a desired series combination of the resistive elements within the resistor array is selected, the resistive switching layer in the connected memory device can be in a desired resistance state.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Applicants: INTERMOLECULAR INC., SANDISK 3D LLC, KABUSHIKI KAISHA TOSHIBA
    Inventors: Dipankar Pramanik, David E. Lazovsky, Tim Minvielle, Takeshi Yamaguchi
  • Publication number: 20140175355
    Abstract: Provided are carbon doped resistive switching layers, resistive random access memory (ReRAM) cells including these layers, as well as methods of forming thereof. Carbon doping of metal containing materials creates defects in these materials that allow forming and breaking conductive paths as evidenced by resistive switching. Relative to many conventional dopants, carbon has a lower diffusivity in many suitable base materials. As such, these carbon doped materials exhibit structural stability and consistent resistive switching over many operating cycles. Resistive switching layers may include as much as 30 atomic percent of carbon, making the dopant control relatively simple and flexible. Furthermore, carbon doping has acceptor characteristics resulting in a high resistivity and low switching currents, which are very desirable for ReRAM applications. Carbon doped metal containing layer may be formed from metalorganic precursors at temperatures below saturation ranges of atomic layer deposition.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Applicants: INTERMOLECULAR INC., SANDISK 3D LLC, KABUSHIKI KAISHA TOSHIBA
    Inventors: Yun Wang, Tony P. Chiang, Tim Minvielle, Takeshi Yamaguchi
  • Publication number: 20140175361
    Abstract: Provided are resistive random access memory (ReRAM) cells having switching layers that include hafnium, aluminum, oxygen, and nitrogen. The composition of such layers is designed to achieve desirable performance characteristics, such as low current leakage as well as low and consistent switching currents. In some embodiments, the concentration of nitrogen in a switching layer is between about 1 and 20 atomic percent or, more specifically, between about 2 and 5 atomic percent. Addition of nitrogen helps to control concentration and distribution of defects in the switching layer. Also, nitrogen as well as a combination of two metals helps with maintaining this layer in an amorphous state. Excessive amounts of nitrogen reduce defects in the layer such that switching characteristics may be completely lost. The switching layer may be deposited using various techniques, such as sputtering or atomic layer deposition (ALD).
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Applicants: INTERMOLECULAR INC., SANDISK 3D LLC, KABUSHIKI KAISHA TOSHIBA
    Inventors: Chien-Lan Hsueh, Randall J. Higuchi, Tim Minvielle, Jinhong Tong, Yun Wang, Takeshi Yamaguchi
  • Publication number: 20140175356
    Abstract: Provided are resistive random access memory (ReRAM) cells including resistive switching layers and thermally isolating structures for limiting heat dissipation from the switching layers during operation. Thermally isolating structures may be positioned within a stack or adjacent to the stack. For example, a stack may include one or two thermally isolating structures. A thermally isolating structure may directly interface with a switching layer or may be separated by, for example, an electrode. Thermally isolating structures may be formed from materials having a thermal conductivity of less than 1 W/m*K, such as porous silica and mesoporous titanium oxide. A thermally isolating structure positioned in series with a switching layer generally has a resistance less than the low resistance state of the switching layer. A thermally isolating structure positioned adjacent to a switching layer may have a resistance greater than the high resistance state of the switching layer.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Applicants: Intermolecular Inc., SanDisk 3D LLC, Kabushiki Kaisha Toshiba
    Inventors: Yun Wang, Tony P. Chiang, Tim Minvielle, Takeshi Yamaguchi
  • Publication number: 20140175354
    Abstract: Provided are methods of forming nonvolatile memory elements using atomic layer deposition techniques, in which at least two different layers of a memory element are deposited sequentially and without breaking vacuum in a deposition chamber. This approach may be used to prevent oxidation of various materials used for electrodes without a need for separate oxygen barrier layers. A combination of signal lines and resistive switching layers may be used to cap the electrodes and to minimize their oxidation. As such, fewer layers are needed in a memory element. Furthermore, atomic layer deposition allows more precise control of electrode thicknesses. In some embodiments, a thickness of an electrode may be less than 50 Angstroms. Overall, atomic layer deposition of electrodes and resistive switching layers lead to smaller thicknesses of entire memory elements making them more suitable for low aspect ratio features of advanced nodes.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Applicants: INTERMOLECULAR INC., SANDISK 3D LLC, KABUSHIKI KAISHA TOSHIBA
    Inventors: Yun Wang, Tony P. Chiang, Tim Minvielle, Takeshi Yamaguchi
  • Patent number: 8759806
    Abstract: A semiconductor memory device in an embodiment comprises memory cells, each of the memory cells disposed between a first line and a second line and having a variable resistance element and a switching element connected in series. The variable resistance element includes a variable resistance layer configured to change in resistance value thereof between a low-resistance state and a high-resistance state. The variable resistance layer is configured by a transition metal oxide. A ratio of transition metal and oxygen configuring the transition metal oxide varies between 1:1 and 1:2 along a first direction directed from the first line to the second line.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: June 24, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takeshi Yamaguchi, Hirofumi Inoue, Reika Ichihara, Takayuki Tsukamoto, Takashi Shigeoka, Katsuyuki Sekine, Shinya Aoki
  • Patent number: 8741193
    Abstract: The injection molding method for injecting a resin into a cavity formed within a mold is provided with a heating step in which the temperature of a cavity surface forming the cavity of the mold is heated to a temperature equal to or higher than a heat distortion temperature of the resin and an injection step in which after the heating step, during a decrease in temperature of the cavity surface of the mold, the resin is injected into the cavity.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: June 3, 2014
    Assignee: Mitsubishi Heavy Industries Plastic Technology Co., Ltd.
    Inventors: Naoki Toda, Satoshi Imaeda, Toshihiko Kariya, Takeshi Yamaguchi
  • Patent number: 8735217
    Abstract: A nonvolatile memory element is disclosed comprising a first electrode, a near-stoichiometric metal oxide memory layer having bistable resistance, and a second electrode in contact with the near-stoichiometric metal oxide memory layer. At least one electrode is a resistive electrode comprising a sub-stoichiometric transition metal nitride or oxynitride, and has a resistivity between 0.1 and 10 ?cm. The resistive electrode provides the functionality of an embedded current-limiting resistor and also serves as a source and sink of oxygen vacancies for setting and resetting the resistance state of the metal oxide layer. Novel fabrication methods for the second electrode are also disclosed.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: May 27, 2014
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Hieu Pham, Vidyut Gopal, Imran Hashim, Tim Minvielle, Dipankar Pramanik, Yun Wang, Takeshi Yamaguchi, Hong Sheng Yang
  • Patent number: 8735864
    Abstract: Embodiments of the invention generally include a method of forming a nonvolatile memory device that contains a resistive switching memory element that has an improved device switching performance and lifetime, due to the addition of a current limiting component disposed therein. In one embodiment, the current limiting component comprises a resistive material that is configured to improve the switching performance and lifetime of the resistive switching memory element. The electrical properties of the current limiting layer are configured to lower the current flow through the variable resistance layer during the logic state programming steps (i.e., “set” and “reset” steps) by adding a fixed series resistance in the resistive switching memory element found in the nonvolatile memory device. In one embodiment, the current limiting component comprises a tunnel nitride that is a current limiting material that is disposed within a resistive switching memory element in a nonvolatile resistive switching memory device.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: May 27, 2014
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Mihir Tendulkar, Tim Minvielle, Yun Wang, Takeshi Yamaguchi
  • Patent number: 8704203
    Abstract: Embodiments of the invention include nonvolatile memory elements and memory devices comprising the nonvolatile memory elements. Methods for forming the nonvolatile memory elements are also disclosed. The nonvolatile memory element comprises a first electrode layer, a second electrode layer, and a plurality of layers of an oxide disposed between the first and second electrode layers. One of the oxide layers has linear resistance and substoichiometric composition, and the other oxide layer has bistable resistance and near-stoichiometric composition. Preferably, the sum of the two oxide layer thicknesses is between about 20 ? and about 100 ?, and the oxide layer with bistable resistance has a thickness between about 25% and about 75% of the total thickness. In one embodiment, the oxide layers are formed using reactive sputtering in an atmosphere with controlled flows of argon and oxygen.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: April 22, 2014
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, Sandisk 3D LLC
    Inventors: Hieu Pham, Vidyut Gopal, Imran Hashim, Tim Minvielle, Yun Wang, Takeshi Yamaguchi, Hong Sheng Yang
  • Patent number: 8698228
    Abstract: According to one embodiment, a non-volatile memory device includes a stacked structure and a voltage application portion. The stacked structure includes a memory portion, and an electrode stacked with the memory portion and having a surface having a portion facing the memory portion. The voltage application portion applies a voltage to the memory portion to cause a change in a resistance in the memory portion to store information. The surface includes a first region and a second region. The first region contains at least one of a metallic element, Si, Ga, and As. The first region is conductive. The second region contains at least one of the metallic element, Si, Ga, and As, and has a content ratio of nonmetallic element higher than a content ratio of nonmetallic element in the first region. At least one of the first region and the second region has an anisotropic shape on the surface.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: April 15, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takeshi Araki, Takeshi Yamaguchi, Mariko Hayashi, Kohichi Kubo, Takayuki Tsukamoto
  • Patent number: 8692899
    Abstract: A solid-state imaging device includes: an imaging unit taking a subject image focused by an imaging optical system; a digital signal processing unit generating image data of the subject image taken by the imaging unit and luminance data thereof; an input/output unit inputting and outputting data; a focus evaluation value generating unit generating a focus evaluation value of the subject image based on the luminance data outputted from the digital signal processing unit and outputting the focus evaluation value from the input/output unit; and an imaging drive unit starting an imaging operation by the imaging unit when an imaging instruction signal is inputted from the input/output unit, and outputting an imaging-end timing signal from the input/output unit when the imaging operation is completed.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: April 8, 2014
    Assignee: Sony Corporation
    Inventors: Tsutomu Haruta, Eiji Makino, Takeshi Yamaguchi, Shinsuke Shimomoto
  • Patent number: 8692914
    Abstract: An image sensor includes a solid-state image pickup device, an optical system, and a flash. The solid-state image pickup device has an electronic shutter function of outputting accumulated signal charges at a timing corresponding to a shutter speed. The optical system collects incident light to an image pickup area of the solid-state image pickup device. The flash irradiates light to an object to be photographed by the solid-state image pickup device. The solid-state image pickup device includes a pulse generator circuit for generating one or more of an electronic shutter pulse for controlling an accumulation time of signal charges by using the electronic shutter function, an optical system movement pulse for controlling movement of the optical system, and a flash pulse for controlling an emission timing of the flash.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: April 8, 2014
    Assignee: Sony Corporation
    Inventors: Tsutomu Haruta, Eiji Makino, Takeshi Yamaguchi, Tatsuya Matsumura
  • Publication number: 20140061578
    Abstract: A nonvolatile semiconductor memory device below comprises: a memory cell array configured having memory cells arranged therein disposed at intersections of a plurality of first lines and a plurality of second lines formed so as to intersect each other, and the memory cells each comprising a variable resistance element; and a control circuit configured to select and drive the first lines and the second lines. The variable resistance element is configured by a transition metal oxide film. The variable resistance element is electrically connected to a first electrode configured from a metal at a first surface and is electrically connected to a second electrode at a second surface which is on an opposite side to the first surface. A first insulating film is formed between the first electrode and the variable resistance element. The first insulating film is formed by a first material that is formed by covalent binding.
    Type: Application
    Filed: February 28, 2013
    Publication date: March 6, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Shigeki KOBAYASHI, Yasuhiro Nojiri, Masaki Yamato, Hiroyuki Fukumizu, Takeshi Yamaguchi
  • Publication number: 20140063912
    Abstract: According to an embodiment, a non-volatile memory device includes a first conductive layer, a second conductive layer, and a resistance change layer provided between the first conductive layer and the second conductive layer. The resistance change layer is capable of making a transition between a low-resistance state and a high-resistance state, and includes an oxide containing at least one of hafnium (Hf) and zirconium (Zr), at least one selected from the group consisting of barium (Ba), lanthanum (La), gadolinium (Gd) and lutetium (Lu), and nitrogen (N).
    Type: Application
    Filed: August 12, 2013
    Publication date: March 6, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Fumihiko AIGA, Takeshi Yamaguchi, Shigeki Kobayashi