Patents by Inventor Takeshi Yasui

Takeshi Yasui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11384431
    Abstract: A substrate processing apparatus includes: a first process chamber where a substrate is subjected to a first process; a second process chamber where the substrate is subjected to a second process; a substrate support unit; a first electrode; a second electrode; an elevating unit; a gas supply unit supplying a first gas, a second gas and a third gas to the substrate; a power supply unit; a control unit controlling the elevating unit, the gas supply unit and the power supply unit so as to: (a) perform the first process by supplying the second gas activated by the first electrode and the first gas to the substrate; (b) move the substrate on the substrate support unit from the first process chamber to the second process chamber after (a); and (c) perform the second process by supplying the third gas activated by the second electrode to the substrate after (b).
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: July 12, 2022
    Assignee: KOKUSAI ELECTRIC CORPORATION
    Inventors: Masanori Nakayama, Takeshi Yasui, Masaki Murobayashi, Teruo Yoshino
  • Publication number: 20220139760
    Abstract: According to one aspect of the technique in the disclosure, there is provided a substrate processing apparatus including: a process chamber in which a substrate is accommodated; a susceptor configured to support the substrate in the process chamber; and a susceptor cover provided on an upper surface of the susceptor, wherein the susceptor includes: a heating element; and a first through-hole located so as to avoid the heating element, and the susceptor cover includes a second through-hole communicating with the first through-hole and having a diameter greater than a diameter of the first through-hole.
    Type: Application
    Filed: January 21, 2022
    Publication date: May 5, 2022
    Applicant: Kokusai Electric Corporation
    Inventors: Yasutoshi TSUBOTA, Takeshi YASUI, Tetsuaki INADA
  • Publication number: 20220010433
    Abstract: A substrate processing apparatus comprising: a substrate process chamber having a plasma generation space where a processing gas is plasma-excited and a substrate processing space communicating with the plasma generation space; a substrate mounting table installed inside the substrate processing space and for mounting a substrate; an inductive coupling structure provided with a coil installed to be wound around an outer periphery of the plasma generation space; a substrate support table elevating part for raising and lowering the substrate mounting table; a gas supply part for supplying the processing gas to the plasma generation space; and a controller for controlling the substrate support table elevating part, based on a power value of a high-frequency power supplied to the coil, so that the substrate mounted on the substrate mounting table is positioned at a target height according to the power value and spaced apart from a lower end of the coil.
    Type: Application
    Filed: September 24, 2021
    Publication date: January 13, 2022
    Applicant: KOKUSAI ELECTRIC CORPORATION
    Inventors: Teruo YOSHINO, Takeshi YASUI, Masaki MUROBAYASHI, Koichiro HARADA, Tadashi TERASAKI, Masanori NAKAYAMA
  • Publication number: 20220005678
    Abstract: Described herein is a technique capable of improving a heating efficiency for a substrate to be heated by a heater. According to one aspect of the technique of the present disclosure, there is provided a substrate processing apparatus including: a process vessel defining a process chamber; a process gas supplier configured to supply a process gas into the process vessel; an electromagnetic field generation electrode extending along an outer peripheral surface of the process vessel while being spaced apart from the outer peripheral surface of the process vessel and configured to generate an electromagnetic field in the process vessel by being supplied with a high frequency power; a heater configured to radiate an infrared light to heat a substrate accommodated in the process chamber; and a reflector provided between the process vessel and the electromagnetic field generation electrode and configured to reflect the infrared light radiated from the heater.
    Type: Application
    Filed: September 15, 2021
    Publication date: January 6, 2022
    Applicant: KOKUSAI ELECTRIC CORPORATION
    Inventors: Tetsuaki INADA, Takeshi YASUI
  • Patent number: 11180835
    Abstract: A steel sheet has a predetermined chemical composition, and a surface exhibits an absorption peak at which a reflectance is not less than 50% nor more than 85% in a range of wave numbers of 1200 cm?1 to 1300 cm?1 by a Fourier transform-infrared spectroscopy analysis by a reflection absorption spectrometry method, and does not exhibit an absorption peak in a range of wave numbers of 1000 cm?1 to 1100 cm?1, or exhibits an absorption peak at which a reflectance is 85% or more in the range of wave numbers of 1000 cm?1 to 1100 cm?1, wherein Ni of 3 mg/m2 to 100 mg/m2 adheres to the surface.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: November 23, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Kohei Ueda, Hiroyuki Kawata, Takayuki Kitazawa, Takeshi Yasui, Hiroyuki Ban
  • Patent number: 11155922
    Abstract: A method of manufacturing a semiconductor device includes: loading a substrate into a substrate process chamber having a plasma generation space in which a processing gas is plasma-excited and a substrate process space communicating with the plasma generation space; mounting the substrate on a substrate mounting table installed inside the substrate process space; adjusting a height of the substrate mounting table so that the substrate is located at a height lower than a lower end of a coil, the coil configured to wind around an outer periphery of the plasma generation space so as to have a diameter larger than a diameter of the substrate; supplying the processing gas to the plasma generation space; plasma-exciting the processing gas supplied to the plasma generation space by supplying a high-frequency power to the coil to resonate the coil; and processing the substrate mounted on the substrate mounting table by the plasma-excitation.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: October 26, 2021
    Assignee: KOKUSAI ELECTRIC CORPORATION
    Inventors: Teruo Yoshino, Takeshi Yasui, Masaki Murobayashi, Koichiro Harada, Tadashi Terasaki, Masanori Nakayama
  • Publication number: 20210131517
    Abstract: A damping valve includes: a ring-shaped leaf valve having either one of an outer circumference and an inner circumference as a free end, the free end being allowed to be deflected toward both sides in the axial direction; a ring-shaped opposing portion that opposes the free end of the leaf valve with a gap; a first sub leaf valve stacked on one side of the leaf valve in the axial direction; and a first passage formed in the leaf valve so as to extend in parallel with the gap, the first passage being configured to be opened when the leaf valve is deflected in the direction away from the first sub leaf valve.
    Type: Application
    Filed: November 4, 2020
    Publication date: May 6, 2021
    Applicants: KYB Corporation, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takeshi YASUI, Kazuyuki MIZUNO
  • Publication number: 20210010557
    Abstract: The valve includes a valve case; an annular valve body, an outer peripheral end of which is a free end movable to both sides in an axial direction with respect to the valve case; a facing portion provided in the valve case, the facing portion including an annular facing surface which is located on an outer peripheral side of the valve body and is configured to face the free end with a gap; and first and second valve stoppers which are located on both sides respectively in the axial direction of the valve body. The first and second valve stoppers, respectively, have a plurality of support portions that are configured to support different positions of the valve body in a radial direction at different heights when the valve body deflects.
    Type: Application
    Filed: April 2, 2019
    Publication date: January 14, 2021
    Applicant: KYB Corporation
    Inventors: Kazuyuki KIMISHIMA, Takeshi YASUI
  • Publication number: 20200402774
    Abstract: Described herein is a technique capable of suppressing sputtering on an inner peripheral surface of a process vessel when a process gas is plasma-excited in the process vessel. According to one aspect thereof, a substrate processing apparatus includes: a process vessel accommodating a process chamber where a process gas is excited into plasma; a gas supplier supplying the process gas into the process chamber; a coil wound around an outer peripheral surface of the process vessel and spaced apart therefrom, wherein a high frequency power is supplied to the coil; and an electrostatic shield disposed between the outer peripheral surface and the coil, wherein the electrostatic shield includes: a partition extending in a circumferential direction to partition between a part of the coil and the outer peripheral surface; and an opening extending in the circumferential direction and opened between another part of the coil and the outer peripheral surface.
    Type: Application
    Filed: September 8, 2020
    Publication date: December 24, 2020
    Inventors: Takeshi YASUI, Katsunori FUNAKI, Yasutoshi TSUBOTA, Koichiro HARADA
  • Patent number: 10837906
    Abstract: According to the present invention, a measurement device includes a light emitting part configured to emit a plurality of spectral lights each including two or more spectra distributed at mutually different frequencies by causing adjacent frequency intervals to be different from each other, a focusing part configured to focus light by causing two or more spectra to overlap in an overlapping region in each of a plurality of different focal point regions of a sample and to be shifted from each other, and a detecting part configured to acquire a signal of fluorescence beats which emits light by interference light beats in each of a plurality of overlapping regions in the sample and includes information of the sample.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: November 17, 2020
    Assignee: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Takeshi Yasui, Tetsuo Iwata, Yasuhiro Mizutani, Takeo Minamikawa, Takahiko Mizuno, Eiji Hase, Hirotsugu Yamamoto
  • Patent number: 10822684
    Abstract: A hot-dip galvanized steel sheet includes a base steel sheet and a hot-dip galvanized layer formed on at least one surface of the base steel sheet, in which the hot-dip galvanized layer includes Fe in a content of more than 0% to 5% or less, Al in a content of more than 0% to 1.0% or less, and columnar grains formed by a ? phase on the surface of the steel sheet, further, 20% or more of the entire interface between the hot-dip galvanized layer and the base steel sheet is coated with the ? phase, and a ratio of an interface formed between ? grains in which coarse oxides are present among ? grains and the base steel sheet with respect to the entire interface between the ? phase and the base steel sheet in the hot-dip galvanized layer is 50% or less, the base steel sheet has predetermined chemical components and a refined layer in direct contact with the interface between the base steel sheet and the hot-dip galvanized layer, an average thickness of the refined layer is 0.1 to 5.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: November 3, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Hiroyuki Kawata, Takeshi Yasui, Kohei Ueda, Naoki Maruyama, Yuji Yamaguchi, Satoshi Uchida, Ryosuke Komami, Hayato Arai, Toyomitsu Nakamura
  • Patent number: 10822683
    Abstract: A hot-dip galvanized steel sheet includes a base steel sheet and a hot-dip galvanized layer formed on at least one surface of the base steel sheet, in which the hot-dip galvanized layer includes Fe in a content of more than 0% to 5% or less, Al in a content of more than 0% to 1.0% or less, and columnar grains formed by a ? phase on the surface of the steel sheet, further, 20% or more of the entire interface between the hot-dip galvanized layer and the base steel sheet is coated with the ? phase, and a ratio of an interface formed between ? grains in which coarse oxides are present among grains and the base steel sheet with respect to the entire interface between the ? phase and the base steel sheet in the hot-dip galvanized layer is 50% or less, the base steel sheet has predetermined chemical components and a refined layer in direct contact with the interface between the base steel sheet and the hot-dip galvanized layer, an average thickness of the refined layer is 0.1 to 5.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: November 3, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Hiroyuki Kawata, Takeshi Yasui, Kohei Ueda, Naoki Maruyama, Yuji Yamaguchi, Satoshi Uchida, Ryosuke Komami, Hayato Arai, Toyomitsu Nakamura
  • Publication number: 20200256417
    Abstract: A valve includes: a valve case; and an annular valve body, one of the inner circumference end and the outer circumference end of the valve body being formed as the free end capable of moving towards both sides in the axial direction with respect to the valve case. The valve case has the annular opposing surface capable of opposing to the free end so as to form the gap therebetween, and the guide surface that is positioned on one side of the opposing surface in the axial direction, the guide surface being continuous with the part of the opposing surface in the circumferential direction. The guide surface is inclined in the direction away from the valve body as the distance from the opposing surface is increased.
    Type: Application
    Filed: December 12, 2018
    Publication date: August 13, 2020
    Applicant: KYB Corporation
    Inventors: Kazuyuki KIMISHIMA, Tomohiko BABA, Takeshi YASUI
  • Publication number: 20200219699
    Abstract: There is provided a plasma vessel in which a process gas is plasma-excited; a substrate process chamber which is in communication with the plasma vessel; a gas supply system supplying the process gas; and a coil installed to wind around an outer periphery of the plasma vessel and supplied with high-frequency power, wherein the coil is installed such that: a distance from an inner periphery of the coil to an inner periphery of the plasma vessel at a predetermined position on the coil is different from a distance from the inner periphery of the coil to the inner periphery of the plasma vessel at another position on the coil; and a distance from the inner periphery of the coil to the inner periphery of the plasma vessel at a position at which an amplitude of a standing wave of a voltage applied to the coil is maximized is maximized.
    Type: Application
    Filed: March 17, 2020
    Publication date: July 9, 2020
    Applicant: KOKUSAI ELECTRIC CORPORATION
    Inventors: Takeshi YASUI, Katsunori FUNAKI, Masaki MUROBAYASHI, Koichiro HARADA
  • Patent number: 10704132
    Abstract: A high-strength hot-dip galvanized steel sheet excellent in impact resistance and worked portion corrosion resistance including a hot-dip galvanized plating layer on a steel sheet base material whose tensile strength is 590 MPa or more, wherein the plating layer includes projecting alloy layers being in contact with the steel sheet base material, a number density of the projecting alloy layers is 4 pieces/mm or more, wherein the steel sheet base material includes: a miniaturized layer being directly in contact with the interface between the steel sheet base material and the plating layer; a decarburized layer being in contact with the miniaturized layer; and an inner layer other than the miniaturized layer and the decarburized layer, and one or more kinds of oxides of Si and Mn are contained in layers of the miniaturized layer, the decarburized layer, and the projecting alloy layers.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: July 7, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Takeshi Yasui, Hiroyuki Kawata, Yuji Yamaguchi, Ryosuke Komami, Satoshi Uchida, Akinobu Murasato
  • Publication number: 20200166457
    Abstract: According to the present invention, a measurement device includes a light emitting part configured to emit a plurality of spectral lights each including two or more spectra distributed at mutually different frequencies by causing adjacent frequency intervals to be different from each other, a focusing part configured to focus light by causing two or more spectra to overlap in an overlapping region in each of a plurality of different focal point regions of a sample and to be shifted from each other, and a detecting part configured to acquire a signal of fluorescence beats which emits light by interference light beats in each of a plurality of overlapping regions in the sample and includes information of the sample.
    Type: Application
    Filed: August 9, 2018
    Publication date: May 28, 2020
    Inventors: Takeshi YASUI, Tetsuo IWATA, Yasuhiro MIZUTANI, Takeo MINAMIKAWA, Takahiko MIZUNO, Eiji HASE, Hirotsugu YAMAMOTO
  • Patent number: 10507629
    Abstract: A hot-dip galvanized steel sheet wherein the hot-dip galvanized steel sheet comprises a base steel sheet and a hot-dip galvanized layer, a ferrite phase is, by volume fraction, 40% or more and 97% or less in a range of ? thickness to ? thickness centered at a position of ΒΌ thickness from the surface of the base steel sheet, a hard structure is 3% or more in total, wherein the hot-dip galvanized steel sheet has the hot-dip galvanized layer in which Fe is 5.0% or less and Al is 1.0% or less, and columnar grains formed of a ? phase is 20% or more in an entire interface between the plated layer and the base steel sheet on the surface of the base steel sheet in which a ratio of a volume fraction of the hard structure in a surface layer range of 20 ?m depth in a steel sheet direction from an interface between the hot-dip galvanized layer and the base steel sheet is 0.10 times or more to 0.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: December 17, 2019
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Hiroyuki Kawata, Takeshi Yasui, Kohei Ueda, Naoki Maruyama, Yuji Yamaguchi, Satoshi Uchida, Ryosuke Komami, Hayato Arai, Yasuhiro Nakashima, Toyomitsu Nakamura
  • Patent number: 10435399
    Abstract: The present invention provides a heterocyclic compound having a HDAC inhibitory action, and useful for the treatment of central nervous system diseases including neurodegenerative disease, and the like, and a medicament comprising the compound. The present invention relates to a compound represented by the formula (I): wherein each symbol is as defined in the specification, or a salt thereof.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: October 8, 2019
    Assignee: Takeda Pharmaceutical Company Limited
    Inventors: Masahiro Ito, Hideyuki Sugiyama, Osamu Kubo, Fumiaki Kikuchi, Takeshi Yasui, Keiko Kakegawa, Zenichi Ikeda, Tohru Miyazaki, Yasuyoshi Arikawa, Tomohiro Okawa, Jinichi Yonemori, Akinori Toita, Takuto Kojima, Yasutomi Asano, Ayumu Sato, Hironobu Maezaki, Shinobu Sasaki, Hironori Kokubo, Misaki Homma, Minoru Sasaki, Yasuhiro Imaeda
  • Publication number: 20190135799
    Abstract: The present invention provides a heterocyclic compound having a HDAC inhibitory action, and useful for the treatment of central nervous system diseases including neurodegenerative disease, and the like, and a medicament comprising the compound. The present invention relates to a compound represented by the formula (I): wherein each symbol is as defined in the specification, or a salt thereof.
    Type: Application
    Filed: July 30, 2018
    Publication date: May 9, 2019
    Inventors: Masahiro ITO, Hideyuki SUGIYAMA, Osamu KUBO, Fumiaki KIKUCHI, Takeshi YASUI, Keiko KAKEGAWA, Zenichi IKEDA, Tohru MIYAZAKI, Yasuyoshi ARIKAWA, Tomohiro OKAWA, Jinichi YONEMORI, Akinori TOITA, Takuto KOJIMA, Yasutomi ASANO, Ayumu SATO, Hironobu MAEZAKI, Shinobu SASAKI, Hironori KOKUBO, Misaki HOMMA, Minoru SASAKI, Yasuhiro IMAEDA
  • Publication number: 20190032217
    Abstract: A method of manufacturing a semiconductor device includes: loading a substrate into a substrate process chamber having a plasma generation space in which a processing gas is plasma-excited and a substrate process space communicating with the plasma generation space; mounting the substrate on a substrate mounting table installed inside the substrate process space; adjusting a height of the substrate mounting table so that the substrate is located at a height lower than a lower end of a coil, the coil configured to wind around an outer periphery of the plasma generation space so as to have a diameter larger than a diameter of the substrate; supplying the processing gas to the plasma generation space; plasma-exciting the processing gas supplied to the plasma generation space by supplying a high-frequency power to the coil to resonate the coil; and processing the substrate mounted on the substrate mounting table by the plasma-excitation.
    Type: Application
    Filed: September 20, 2018
    Publication date: January 31, 2019
    Applicant: KOKUSAI ELECTRIC CORPORATION
    Inventors: Teruo YOSHINO, Takeshi YASUI, Masaki MUROBAYASHI, Koichiro HARADA, Tadashi TERASAKI, Masanori NAKAYAMA