Patents by Inventor Takeshi Yasui

Takeshi Yasui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9551057
    Abstract: Provided are: a galvannealed steel sheet, improved in the adhesiveness of a plated layer with a base steel sheet, as a galvannealed steel sheet, prepared by using a high-strength steel sheet as a base material; and a method for producing the galvannealed steel sheet. A galvannealed layer is formed on the base steel sheet including a high-strength steel having a predetermined composition. The average amount of Fe in the galvannealed layer is 8.0 to 12.0%. The absolute value of a difference (?Fe) between the amount of Fe in the vicinity of an interface with the base steel sheet and the amount of Fe in the vicinity of the external surface of the plated layer in the plated layer is 0.0 to 3.0%.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: January 24, 2017
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki Kawata, Naoki Maruyama, Akinobu Murasato, Akinobu Minami, Takeshi Yasui
  • Patent number: 9481148
    Abstract: The present invention provides a high-corrosion-resistance hot-dip galvanized steel sheet having excellent appearance uniformity. The steel sheet includes: a coating layer containing Al: 4 to 22 mass %, Mg: 1 to 6 mass %, and Si: 0.001 to 1 mass %, and a balance being composed of Zn and inevitable impurities formed on a surface, in which at an interface between the coating layer and a base steel sheet, Mg2Si phases and Ca phases each mainly composed of Ca or a Ca compound exist, and at least part of the Mg2Si phases precipitate by using the Ca phases as a nucleus.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: November 1, 2016
    Assignee: NIPPON STEEL AND SUMITOMO METAL CORPORATION
    Inventors: Takeshi Yasui, Tooru Oohashi, Nayuta Kawazu, Satoru Tanaka, Akio Saito
  • Publication number: 20160284581
    Abstract: Provided are a substrate processing apparatus, a method of processing a substrate, a method of manufacturing a semiconductor device, and a non-transitory computer readable recording medium storing a program for performing the method of manufacturing the semiconductor device, that are capable of improving manufacturing throughput of the apparatus. The substrate processing apparatus includes a substrate to be processed, a transfer chamber under a vacuum atmosphere, a substrate transfer unit installed at the transfer chamber and configured to transfer the substrate, at least two process chambers installed near the transfer chamber and configured to process the substrate, at least two gate valves installed between the transfer chamber and the at least two process chambers, and a control unit configured to control the substrate transfer unit and the at least two gate valves, wherein the control unit opens and closes the at least two gate valves while the substrate transfer unit transfers the substrate.
    Type: Application
    Filed: June 14, 2016
    Publication date: September 29, 2016
    Inventors: Takeshi YASUI, Naoya MATSUURA, Mitsuru FUKUDA, Hiroyuki OGAWA
  • Publication number: 20160094182
    Abstract: A semiconductor circuit includes an oscillation circuit; an output circuit that receives a first oscillation signal from the oscillation circuit and outputs a second oscillation signal; a DC circuit that receives a voltage based on a power supply voltage and outputs at least one of a DC voltage and a DC current; and a semiconductor substrate on which the oscillation circuit, the output circuit, and the DC circuit are formed. In a plan view of the semiconductor substrate, the DC circuit is disposed between the oscillation circuit and the output circuit.
    Type: Application
    Filed: September 24, 2015
    Publication date: March 31, 2016
    Inventors: Hitoshi Kobayashi, Yoshiki Makiuchi, Takeshi Yasui
  • Patent number: 9234268
    Abstract: The present invention provides a high-strength galvanized steel sheet with maximum tensile strength of 900 MPa or more. The high-strength galvanized steel sheet has an alloyed galvanized layer formed on a surface of a base steel sheet containing predetermined amounts of C, Si, Mn, P, S, Al, N, O with a balance being constituted of iron and inevitable impurities, in which in a structure of the base steel sheet, retained austenite is limited to 8% or less in volume fraction, kurtosis K* of the hardness distribution between 2% hardness and 98% hardness is ?0.30 or less, a ratio between Vickers hardness of surface layer of the base steel sheet and Vickers hardness of ¼ thickness of the base steel sheet is 0.35 to 0.70, and a content of iron in the alloyed galvanized layer is 8 to 12% in mass %.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: January 12, 2016
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki Kawata, Naoki Maruyama, Akinobu Murasato, Akinobu Minami, Takeshi Yasui, Takuya Kuwayama, Shigeru Yonemura
  • Publication number: 20150371883
    Abstract: In the present invention, a substrate is placed at a predetermined position on a substrate support even though the substrate is deviated on a substrate transfer unit. There is provided a substrate processing apparatus that includes a process chamber, a transfer chamber accommodating a substrate transfer unit, a substrate detecting unit, a memory unit configured to store a first reference position information, a second reference position information and a substrate reference position information and a controller configured to generate a detected position information representing a position of a substrate being transferred in the transfer chamber based on a detection result and to control the substrate transfer unit to place the substrate based on the detected position information, the first reference position information, the substrate reference position information and a difference between the first reference position information and the second reference position information.
    Type: Application
    Filed: August 28, 2015
    Publication date: December 24, 2015
    Applicant: HITACHI KOKUSAI ELECTRIC INC.
    Inventors: Akira TAKAHASHI, Takeshi YASUI, Hiroyuki OGAWA, Kazuya NABETA, Naoya MATSUURA
  • Publication number: 20150329946
    Abstract: A galvannealed steel sheet includes: a steel sheet; a coating layer on a surface of the steel sheet; and a mixed layer formed between the steel sheet and the coating layer, in which the mixed layer includes a base iron portion having fine grains having a size of greater than 0 ?m and equal to or smaller than 2 ?m, a Zn—Fe alloy phase, and oxides containing one or more types of Mn, Si, Al, and Cr, and in the mixed layer, the oxides and the Zn—Fe alloy phase are present in grain boundaries that form the fine grains and the Zn—Fe alloy phase is tangled with the base iron portion. [Mn]+[Si]+[Al]+[Cr]?0.
    Type: Application
    Filed: December 25, 2012
    Publication date: November 19, 2015
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Takeshi YASUI, Kojiro AKIBA, Kiyokazu ISHIZUKA, Koki TANAKA
  • Patent number: 9162422
    Abstract: Steel contains each of C, Si, Mn, P, S, Al, N, O, at a range from ? thickness centered around a ¼ sheet thickness from a surface to ? thickness centered around the ¼ sheet thickness from the surface at a base steel sheet, a structure of the base steel sheet contains, in volume fraction, 3% or more of a retained austenite phase, 50% or less of a ferrite phase, and 40% or more of a hard phase, average dislocation density is 5×1013/m2 or more, solid-solution C amount contained in the retained austenite phase is in mass % 0.70 to 1.00%, X-ray random intensity ratio of FCC iron in an texture of the retained austenite phase is 3.0 or less, ratio between a grain diameter relative to a rolling direction and a grain diameter relative to a sheet width direction of the retained austenite phase is 0.75 to 1.33.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: October 20, 2015
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki Kawata, Naoki Maruyama, Akinobu Murasato, Akinobu Minami, Takeshi Yasui, Takuya Kuwayama, Hiroyuki Ban, Kaoru Hiramatsu
  • Publication number: 20150204722
    Abstract: Provided is a Fourier transform spectroscopy method that removes restrictions on spectral resolution and spectral accuracy in Fourier transform spectroscopy for observing a cyclic repeating phenomenon, that realizes, theoretically, infinitesimal spectral resolution accuracy. After accurately and sufficiently stabilizing the repetition period of a phenomenon, a temporal waveform is acquired by making a repetition period and a time width for observing the temporal waveform of a phenomenon strictly conform, and by performing a Fourier transform, acquired is a discrete separation spectrum in which the inverse number of the observation time window size T is made a frequency data gap. Measurement is repeated while causing the repetition period to change, and the gap of the discrete separation spectrum is supplemented.
    Type: Application
    Filed: August 26, 2013
    Publication date: July 23, 2015
    Applicant: Osaka University
    Inventors: Takeshi Yasui, Mamoru Hashimoto, Tsutomu Araki, Yuki Iyonaga
  • Patent number: 9028191
    Abstract: Reduction in cooling rate of a substrate having a lower temperature is suppressed because the substrate having a lower temperature is not affected by radiant heat of a substrate having a higher temperature while cooling a plurality of substrates in a cooling chamber.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: May 12, 2015
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Takeshi Yasui, Yukitomo Hirochi, Satoshi Takano, Ritsuo Horii, Makoto Kawabata
  • Patent number: 9000216
    Abstract: An optically active spirolactone compound is highly enantioselectively produced by using an iodoarene derivative which can be synthesized easily and which is not racemized easily. A hypervalent iodine compound precursor (iodoarene derivative) which was able to be designed flexibly was synthesized from 2,6-dihydroxyiodoarene by using 1,2-aminoalcohol as a chiral source in short steps, a hypervalent iodine compound was prepared in a reaction system (in situ) by using a catalyst quantity of the resulting precursor in the presence of a stoichiometric quantity of m-CPBA, and a spirolactonization reaction of 3-(1-hydroxy-2-naphthyl)propionic acid was induced. As a result, a corresponding spirolactone compound was obtained at a high enantiomeric excess.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: April 7, 2015
    Assignee: National University Corporation Nagoya University
    Inventors: Kazuaki Ishihara, Muhammet Uyanik, Takeshi Yasui
  • Patent number: 8993120
    Abstract: A hot-dip galvanizing layer or an alloyed hot dip galvanizing layer is formed on the surface of a base steel sheet in which in volume fraction, 40 to 90% of a ferrite phase and 5% or less of a retained austenite phase are contained, and a ratio of non-recrystallized ferrite to the entire ferrite phase is 50% or less in volume fraction, and further a grain diameter ratio being a value of, of crystal grains in the ferrite phase, an average grain diameter in the rolling direction divided by an average grain diameter in the sheet width direction is 0.75 to 1.33, a length ratio being a value of, of hard structures dispersed in island shapes, an average length in the rolling direction divided by an average length in the sheet width direction is 0.75 to 1.33, and an average aspect ratio of inclusions is 5.0 or less.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: March 31, 2015
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Hiroyuki Kawata, Naoki Maruyama, Akinobu Murasato, Akinobu Minami, Takeshi Yasui, Takuya Kuwayama, Hiroyuki Ban, Kaoru Hiramatsu
  • Publication number: 20150083278
    Abstract: A base steel sheet has a hot-dip galvanized layer formed on a surface thereof, in which, in a steel sheet structure in a range of ? thickness to ? thickness centered around ¼ thickness of a sheet thickness from a surface, a volume fraction of a retained austenite phase is 5% or less, and a total volume fraction of phases of bainite, bainitic ferrite, fresh martensite, and tempered martensite is 40% or more, an average effective crystal grain diameter is 5.0 ?m or less, a maximum effective crystal grain diameter is 20 ?m or less, and a decarburized layer with a thickness of 0.01 ?m to 10.0 ?m is formed on a surface layer portion, in which a density of oxides dispersed in the decarburized layer is 1.0×1012 to 1.0×1016 oxides/m2, and an average grain diameter of the oxides is 500 nm or less.
    Type: Application
    Filed: December 3, 2014
    Publication date: March 26, 2015
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki KAWATA, Naoki MARUYAMA, Akinobu MURASATO, Akinobu MINAMI, Takeshi YASUI, Takuya KUWAYAMA, Hiroyuki BAN, Kaoru HIRAMATSU
  • Patent number: 8932729
    Abstract: A base steel sheet has a hot-dip galvanized layer formed on a surface thereof, in which, in a steel sheet structure in a range of ? thickness to ? thickness centered around ¼ thickness of a sheet thickness from a surface, a volume fraction of a retained austenite phase is 5% or less, and a total volume fraction of phases of bainite, bainitic ferrite, fresh martensite, and tempered martensite is 40% or more, an average effective crystal grain diameter is 5.0 ?m or less, a maximum effective crystal grain diameter is 20 ?m or less, and a decarburized layer with a thickness of 0.01 ?m to 10.0 ?m is formed on a surface layer portion, in which a density of oxides dispersed in the decarburized layer is 1.0×1012 to 1.0×1016 oxides/m2, and an average grain diameter of the oxides is 500 nm or less.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: January 13, 2015
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Hiroyuki Kawata, Naoki Maruyama, Akinobu Murasato, Akinobu Minami, Takeshi Yasui, Takuya Kuwayama, Hiroyuki Ban, Kaoru Hiramatsu
  • Publication number: 20140287263
    Abstract: There is provided a high-strength hot-dip galvanized steel sheet and the like excellent in mechanical cutting property, which are capable of obtaining high ductility while ensuring high strength with maximum tensile strength of 900 MPa or more. The high-strength hot-dip galvanized steel sheet has a sheet thickness of 0.6 to 5.0 mm and has a plating layer on a surface of a steel sheet with component compositions being set in appropriate ranges, in which the steel sheet structure contains a 40 to 90% ferrite phase and a 3% or more retained austenite phase by volume fraction. In the retained austenite phase, a solid solution carbon amount is 0.70 to 1.00%, an average grain diameter is 2.0 ?m or less, an average distance between grains is 0.1 to 5.0 ?m, a thickness of a decarburized layer in a steel sheet surface layer portion is 0.01 to 10.0 ?m, an average grain diameter of oxides contained in the steel, sheet surface layer portion is 30 to 120 nm and an average density thereof is 1.
    Type: Application
    Filed: September 28, 2012
    Publication date: September 25, 2014
    Inventors: Hiroyuki Kawata, Naoki Maruyama, Akinobu Murasato, Akinobu Minami, Takeshi Yasui, Takuya Kuwayama, Hiroyuki Ban, Kaoru Hiramatsu
  • Publication number: 20140234659
    Abstract: A hot-dip galvanizing layer or an alloyed hot dip galvanizing layer is formed on the surface of a base steel sheet in which in volume fraction, 40 to 90% of a ferrite phase and 5% or less of a retained austenite phase are contained, and a ratio of non-recrystallized ferrite to the entire ferrite phase is 50% or less in volume fraction, and further a grain diameter ratio being a value of, of crystal grains in the ferrite phase, an average grain diameter in the rolling direction divided by an average grain diameter in the sheet width direction is 0.75 to 1.33, a length ratio being a value of, of hard structures dispersed in island shapes, an average length in the rolling direction divided by an average length in the sheet width direction is 0.75 to 1.33, and an average aspect ratio of inclusions is 5.0 or less.
    Type: Application
    Filed: September 28, 2012
    Publication date: August 21, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki Kawata, Naoki Maruyama, Akinobu Murasato, Akinobu Minami, Takeshi Yasui, Takuya Kuwayama, Hiroyuki Ban, Kaoru Hiramatsu
  • Publication number: 20140234660
    Abstract: Steel contains each of C, Si, Mn, P, S, Al, N, O, at a range from ? thickness centered around a ¼ sheet thickness from a surface to ? thickness centered around the ¼ sheet thickness from the surface at a base steel sheet, a structure of the base steel sheet contains, in volume fraction, 3% or more of a retained austenite phase, 50% or less of a ferrite phase, and 40% or more of a hard phase, average dislocation density is 5×1013/m2 or more, solid-solution C amount contained in the retained austenite phase is in mass % 0.70 to 1.00%, X-ray random intensity ratio of FCC iron in an texture of the retained austenite phase is 3.0 or less, ratio between a grain diameter relative to a rolling direction and a grain diameter relative to a sheet width direction of the retained austenite phase is 0.75 to 1.33.
    Type: Application
    Filed: September 28, 2012
    Publication date: August 21, 2014
    Inventors: Hiroyuki Kawata, Naoki Maruyama, Akinobu Murasato, Akinobu Minami, Takeshi Yasui, Takuya Kuwayama, Hiroyuki Ban, Kaoru Hiramatsu
  • Publication number: 20140227555
    Abstract: A base steel sheet has a hot-dip galvanized layer formed on a surface thereof, in which, in a steel sheet structure in a range of ? thickness to ? thickness centered around ¼ thickness of a sheet thickness from a surface, a volume fraction of a retained austenite phase is 5% or less, and a total volume fraction of phases of bainite, bainitic ferrite, fresh martensite, and tempered martensite is 40% or more, an average effective crystal grain diameter is 5.0 ?m or less, a maximum effective crystal grain diameter is 20 ?m or less, and a decarburized layer with a thickness of 0.01 ?m to 10.0 ?m is formed on a surface layer portion, in which a density of oxides dispersed in the decarburized layer is 1.0×1012 to 1.0×1016 oxides/m2, and an average grain diameter of the oxides is 500 nm or less.
    Type: Application
    Filed: September 28, 2012
    Publication date: August 14, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki Kawata, Naoki Maruyama, Akinobu Murasato, Akinobu Minami, Takeshi Yasui, Takuya Kuwayama, Hiroyuki Ban, Kaoru Hiramatsu
  • Publication number: 20140212684
    Abstract: The present invention provides a high-strength galvanized steel sheet with maximum tensile strength of 900 MPa or more. The high-strength galvanized steel sheet has an alloyed galvanized layer formed on a surface of a base steel sheet containing predetermined amounts of C, Si, Mn, P, S, Al, N, O with a balance being constituted of iron and inevitable impurities, in which in a structure of the base steel sheet, retained austenite is limited to 8% or less in volume fraction, kurtosis K* of the hardness distribution between 2% hardness and 98% hardness is ?0.30 or less, a ratio between Vickers hardness of surface layer of the base steel sheet and Vickers hardness of ¼ thickness of the base steel sheet is 0.35 to 0.70, and a content of iron in the alloyed galvanized layer is 8 to 12% in mass %.
    Type: Application
    Filed: July 27, 2012
    Publication date: July 31, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki Kawata, Naoki Maruyama, Akinobu Murasato, Akinobu Minami, Takeshi Yasui, Takuya Kuwayama, Shigeru Yonemura
  • Publication number: 20140193665
    Abstract: Provided are: a galvannealed steel sheet, reliably and sufficiently improved in the adhesiveness of a plated layer with a base steel sheet, as a galvannealed steel sheet, prepared by using a high-strength steel sheet as a base material; and a method for producing the galvannealed steel sheet. The galvannealed steel sheet wherein a galvannealed layer is formed on a base steel sheet including a high-strength steel having predetermined component composition; the average amount of Fe in the galvannealed layer is in a range of 8.0 to 12.0%; and the absolute value ?Fe of a difference between the amount of Fe in the vicinity of an interface with the base steel sheet (the amount of Fe in the vicinity of an internal side) and the amount of Fe in the vicinity of the external surface of the plated layer (the amount of Fe in the vicinity of an external side) in the plated layer is in a range of 0.0 to 3.0%.
    Type: Application
    Filed: July 27, 2012
    Publication date: July 10, 2014
    Inventors: Hiroyuki Kawata, Naoki Maruyama, Akinobu Murasato, Akinobu Minami, Takeshi Yasui