Patents by Inventor Tanay A. Gosavi

Tanay A. Gosavi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220199838
    Abstract: A transistor includes a channel layer including a transition metal dichalcogenide (TMD) material, an encapsulation layer on a first portion of the channel layer, a gate electrode above the encapsulation layer, a gate dielectric layer between the gate electrode and the encapsulation layer. The transistor further includes a source contact on a second portion of the channel layer and a drain contact on a third portion of the channel layer, where the gate structure is between drain contact and the source contact.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Applicant: Intel Corporation
    Inventors: Chelsey Dorow, Kevin O'Brien, Carl Naylor, Uygar Avci, Sudarat Lee, Ashish Verma Penumatcha, Chia-Ching LIn, Tanay Gosavi, Shriram Shivaraman, Kirby Maxey
  • Publication number: 20220199812
    Abstract: Transistor structures with monocrystalline metal chalcogenide channel materials are formed from a plurality of template regions patterned over a substrate. A crystal of metal chalcogenide may be preferentially grown from a template region and the metal chalcogenide crystals then patterned into the channel region of a transistor. The template regions may be formed by nanometer-dimensioned patterning of a metal precursor, a growth promoter, a growth inhibitor, or a defected region. A metal precursor may be a metal oxide suitable, which is chalcogenated when exposed to a chalcogen precursor at elevated temperature, for example in a chemical vapor deposition process.
    Type: Application
    Filed: December 21, 2020
    Publication date: June 23, 2022
    Applicant: Intel Corporation
    Inventors: Carl Naylor, Chelsey Dorow, Kevin O'Brien, Sudarat Lee, Kirby Maxey, Ashish Verma Penumatcha, Tanay Gosavi, Patrick Theofanis, Chia-Ching Lin, Uygar Avci, Matthew Metz, Shriram Shivaraman
  • Publication number: 20220199783
    Abstract: A transistor includes a first channel layer over a second channel layer, where the first and the second channel layers include a monocrystalline transition metal dichalcogenide (TMD). The transistor structure further includes a source structure coupled to a first end of the first and second channel layers, a drain structure coupled to a second end of the first and second channel layers, a gate structure between the source material and the drain material, and between the first channel layer and the second channel layer. The transistor further includes a spacer laterally between the gate structure and the and the source structure and between the gate structure and the drain structure. A liner is between the spacer and the gate structure. The liner is in contact with the first channel layer and the second channel layer and extends between the gate structure and the respective source structure and the drain structure.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Applicant: Intel Corporation
    Inventors: Ashish Verma Penumatcha, Kevin O'Brien, Chelsey Dorow, Kirby Maxey, Carl Naylor, Tanay Gosavi, Sudarat Lee, Chia-Ching Lin, Seung Hoon Sung, Uygar Avci
  • Publication number: 20220199799
    Abstract: Thin film transistors having boron nitride integrated with two-dimensional (2D) channel materials are described. In an example, an integrated circuit structure includes a first gate stack above a substrate. A 2D channel material layer is above the first gate stack. A second gate stack is above the 2D channel material layer, the second gate stack having a first side opposite a second side. A first conductive contact is adjacent the first side of the second gate stack and in contact with the 2D channel material layer. A second conductive contact is adjacent the second side of the second gate stack and in contact with the 2D channel material layer. A hexagonal boron nitride (hBN) layer is included between the first gate stack and the 2D channel material layer, between the second gate stack and the 2D channel material layer, or both.
    Type: Application
    Filed: December 22, 2020
    Publication date: June 23, 2022
    Inventors: Kevin P. O'BRIEN, Chelsey DOROW, Carl NAYLOR, Kirby MAXEY, Tanay GOSAVI, Uygar E. AVCI, Ashish Verma PENUMATCHA, Chia-Ching LIN, Shriram SHIVARAMAN, Sudarat LEE
  • Patent number: 11367749
    Abstract: A spin orbit torque (SOT) memory device includes a magnetic tunnel junction (MTJ) device with one end coupled with a first electrode and an opposite end coupled with a second electrode including a spin orbit torque material. In an embodiment, a second electrode is coupled with the free magnet and coupled between a pair of interconnect line segments. The second electrode and the pair of interconnect line segments include a spin orbit torque material. The second electrode has a conductive path cross-section that is smaller than a cross section of the conductive path in at least one of the interconnect line segments.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: June 21, 2022
    Assignee: Intel Corporation
    Inventors: Noriyuki Sato, Angeline Smith, Tanay Gosavi, Sasikanth Manipatruni, Kaan Oguz, Kevin O'Brien, Tofizur Rahman, Gary Allen, Atm G. Sarwar, Ian Young, Hui Jae Yoo, Christopher Wiegand, Benjamin Buford
  • Patent number: 11362263
    Abstract: A perpendicular spin orbit torque (SOT) memory device includes an electrode having a spin orbit coupling material and a magnetic tunnel junction (MTJ) device on a portion of the electrode. The electrode has a first SOC layer and a second SOC layer on a portion of the first SOC layer, where at least a portion of the first SOC layer at an interface with the second SOC layer includes oxygen.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: June 14, 2022
    Assignee: Intel Corporation
    Inventors: Noriyuki Sato, Tanay Gosavi, Justin Brockman, Sasikanth Manipatruni, Kaan Oguz, Kevin O'Brien, Christopher Wiegand, Angeline Smith, Tofizur Rahman, Ian Young
  • Publication number: 20220149192
    Abstract: Thin film transistors having electrostatic double gates are described. In an example, an integrated circuit structure includes an insulator layer above a substrate. A first gate stack is on the insulator layer. A 2D channel material layer is on the first gate stack. A second gate stack is on a first portion of the 2D channel material layer, the second gate stack having a first side opposite a second side. A first conductive contact is adjacent the first side of the second gate stack, the first conductive contact on a second portion of the 2D channel material layer. A second conductive contact is adjacent the second side of the second gate stack, the second conductive contact on a third portion of the 2D channel material layer. A gate electrode of the first gate stack extends beneath a portion of the first conductive contact and beneath a portion of the second conductive contact.
    Type: Application
    Filed: November 9, 2020
    Publication date: May 12, 2022
    Inventors: Kirby MAXEY, Ashish Verma PENUMATCHA, Carl NAYLOR, Chelsey DOROW, Kevin P. O'BRIEN, Shriram SHIVARAMAN, Tanay GOSAVI, Uygar E. AVCI, Sudarat LEE
  • Publication number: 20220140230
    Abstract: An apparatus is provided which comprises: a magnetic junction including: a stack of structures including: a first structure comprising a magnet with an unfixed perpendicular magnetic anisotropy (PMA) relative to an x-y plane of a device, wherein the first structure has a first dimension along the x-y plane and a second dimension in the z-plane, wherein the second dimension is substantially greater than the first dimension. The magnetic junction includes a second structure comprising one of a dielectric or metal; and a third structure comprising a magnet with fixed PMA, wherein the third structure has an anisotropy axis perpendicular to the plane of the device, and wherein the third structure is adjacent to the second structure such that the second structure is between the first and third structures; and an interconnect adjacent to the third structure, wherein the interconnect comprises a spin orbit material.
    Type: Application
    Filed: January 18, 2022
    Publication date: May 5, 2022
    Applicant: Intel Corporation
    Inventors: Sasikanth MANIPATRUNI, Kaan OGUZ, Chia-Ching LIN, Christopher WIEGAND, Tanay GOSAVI, Ian YOUNG
  • Patent number: 11316027
    Abstract: A capacitor device includes a first electrode having a first metal alloy or a metal oxide, a relaxor ferroelectric layer adjacent to the first electrode, where the ferroelectric layer includes oxygen and two or more of lead, barium, manganese, zirconium, titanium, iron, bismuth, strontium, neodymium, potassium, or niobium and a second electrode coupled with the relaxor ferroelectric layer, where the second electrode includes a second metal alloy or a second metal oxide.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: April 26, 2022
    Assignee: Intel Corporation
    Inventors: Sou-Chi Chang, Chia-Ching Lin, Nazila Haratipour, Tanay Gosavi, I-Cheng Tung, Seung Hoon Sung, Ian Young, Jack Kavalieros, Uygar Avci, Ashish Verma Penumatcha
  • Publication number: 20220123206
    Abstract: An apparatus is provided which comprises: a stack comprising a magnetoelectric (ME such as BiFeO3, (LaBi)FeO3, LuFeO3, PMN-PT, PZT, AlN, SmBiFeO3, Cr2O3, etc.) material and a transition metal dichalcogenide (TMD such as MoS2, MoSe2, WS2, WSe2, PtS2, PtSe2, WTe2, MoTe2, graphene, etc.); a magnet adjacent to a first portion of the TMD of the stack; a first interconnect adjacent to the magnet; a second interconnect adjacent to the ME material of the stack; and a third interconnect adjacent to a second portion of the TMD of the stack.
    Type: Application
    Filed: December 29, 2021
    Publication date: April 21, 2022
    Applicant: Intel Corporation
    Inventors: Chia-Ching Lin, Sasikanth Manipatruni, Tanay Gosavi, Dmitri Nikonov, Benjamin Buford, Kaan Oguz, John J. Plombon, Ian A. Young
  • Publication number: 20220115438
    Abstract: A differential magnetoelectric spin-orbit (MESO) logic device is provided where two ports are used to connect the spin orbital module of the MESO device and a ferroelectric capacitor. In some examples, an insulating layer is added to decouple current paths.
    Type: Application
    Filed: October 14, 2020
    Publication date: April 14, 2022
    Applicant: Intel Corporation
    Inventors: Hai Li, Dmitri Nikonov, Chia-Ching Lin, Tanay Gosavi, Ian Young
  • Patent number: 11276730
    Abstract: A perpendicular spin orbit memory device includes a first electrode having a magnetic material and platinum and a material layer stack on a portion of the first electrode. The material layer stack includes a free magnet, a fixed magnet above the first electrode, a tunnel barrier between the free magnet and the fixed magnet and a second electrode coupled with the fixed magnet.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: March 15, 2022
    Assignee: Intel Corporation
    Inventors: Kevin O'Brien, Christopher Wiegand, Tofizur Rahman, Noriyuki Sato, Gary Allen, James Pellegren, Angeline Smith, Tanay Gosavi, Sasikanth Manipatruni, Kaan Oguz, Benjamin Buford, Ian Young
  • Patent number: 11264558
    Abstract: An apparatus is provided which comprises: a magnetic junction including: a stack of structures including: a first structure comprising a magnet with an unfixed perpendicular magnetic anisotropy (PMA) relative to an x-y plane of a device, wherein the first structure has a first dimension along the x-y plane and a second dimension in the z-plane, wherein the second dimension is substantially greater than the first dimension. The magnetic junction includes a second structure comprising one of a dielectric or metal; and a third structure comprising a magnet with fixed PMA, wherein the third structure has an anisotropy axis perpendicular to the plane of the device, and wherein the third structure is adjacent to the second structure such that the second structure is between the first and third structures; and an interconnect adjacent to the third structure, wherein the interconnect comprises a spin orbit material.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: March 1, 2022
    Assignee: Intel Corporation
    Inventors: Sasikanth Manipatruni, Kaan Oguz, Chia-Ching Lin, Christopher Wiegand, Tanay Gosavi, Ian Young
  • Patent number: 11257613
    Abstract: A perpendicular spin orbit torque (SOT) memory device includes an electrode having a spin orbit torque material, where the SOT material includes iridium and manganese and a perpendicular magnetic tunnel junction (pMTJ) device on a portion of the electrode. The pMTJ device includes a free magnet structure electrode, a fixed layer and a tunnel barrier between the free layer and the fixed layer and a SAF structure above the fixed layer. The Ir—Mn SOT material and the free magnet have an in-plane magnetic exchange bias.
    Type: Grant
    Filed: March 31, 2018
    Date of Patent: February 22, 2022
    Assignee: Intel Corporation
    Inventors: Kaan Oguz, Tanay Gosavi, Sasikanth Manipatruni, Charles Kuo, Mark Doczy, Kevin O'Brien
  • Patent number: 11251365
    Abstract: An apparatus is provided which comprises: a magnetic junction having a magnet with a first magnetization; an interconnect adjacent to the magnetic junction, wherein the interconnect comprises an antiferromagnetic (AFM) material which is doped with a doping material (Pt, Ni, Co, or Cr) and a structure adjacent to the interconnect such that the magnetic junction and the structure are on opposite surfaces of the interconnect, wherein the structure comprises a magnet with a second magnetization substantially different from the first magnetization.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: February 15, 2022
    Assignee: Intel Corporation
    Inventors: Tanay Gosavi, Sasikanth Manipatruni, Kaan Oguz, Ian Young, Kevin O'Brien, Gary Allen, Noriyuki Sato
  • Patent number: 11245068
    Abstract: An apparatus is provided which comprises: a stack comprising a magnetoelectric (ME such as BiFeO3, (LaBi)FeO3, LuFeO3, PMN-PT, PZT, AlN, SmBiFeO3, Cr2O3, etc.) material and a transition metal dichalcogenide (TMD such as MoS2, MoSe2, WS2, WSe2, PtS2, PtSe2, WTe2, MoTe2, graphene, etc.); a magnet adjacent to a first portion of the TMD of the stack; a first interconnect adjacent to the magnet; a second interconnect adjacent to the ME material of the stack; and a third interconnect adjacent to a second portion of the TMD of the stack.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: February 8, 2022
    Assignee: Intel Corporation
    Inventors: Chia-Ching Lin, Sasikanth Manipatruni, Tanay Gosavi, Dmitri Nikonov, Benjamin Buford, Kaan Oguz, John J. Plombon, Ian A. Young
  • Publication number: 20210408288
    Abstract: Embodiments disclosed herein comprise semiconductor devices with two dimensional (2D) semiconductor channels and methods of forming such devices. In an embodiment, the semiconductor device comprises a source contact and a drain contact. In an embodiment, a 2D semiconductor channel is between the source contact and the drain contact. In an embodiment, the 2D semiconductor channel is a shell.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 30, 2021
    Inventors: Kevin P. O'Brien, Carl NAYLOR, Chelsey DOROW, Kirby MAXEY, Tanay GOSAVI, Ashish Verma PENUMATCHA, Shriram SHIVARAMAN, Chia-Ching LIN, Sudarat LEE, Uygar E. AVCI
  • Publication number: 20210408227
    Abstract: A transistor structure includes a first channel layer over a second channel layer, where the first and the second channel layers include a monocrystalline transition metal dichalcogenide (TMD). The transistor structure further includes a source material coupled to a first end of the first and second channel layers, a drain material coupled to a second end of the first and second channel layers, a gate electrode between the source material and the drain material, and between the first channel layer and the second channel layer and a gate dielectric between the gate electrode and each of the first channel layer and the second channel layer.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 30, 2021
    Applicant: Intel Corporation
    Inventors: Kevin O'Brien, Chelsey Dorow, Kirby Maxey, Carl Naylor, Shriram Shivaraman, Sudarat Lee, Tanay Gosavi, Chia-Ching Lin, Uygar Avci, Ashish Verma Penumatcha
  • Publication number: 20210408375
    Abstract: A transistor includes a channel including a first layer including a first monocrystalline transition metal dichalcogenide (TMD) material, where the first layer is stoichiometric and includes a first transition metal. The channel further includes a second layer above the first layer, the second layer including a second monocrystalline TMD material, where the second monocrystalline TMD material includes a second transition metal and oxygen, and where the second layer is sub-stoichiometric. The transistor further includes a gate electrode above a first portion of the channel layer, a gate dielectric layer between the channel layer and the gate electrode, a source contact on a second portion of the channel layer and a drain contact on a third portion of the channel layer, where the gate electrode is between drain contact and the source contact.
    Type: Application
    Filed: June 29, 2020
    Publication date: December 30, 2021
    Applicant: Intel Corporation
    Inventors: Chelsey Dorow, Kevin O'Brien, Carl Naylor, Uygar Avci, Sudarat Lee, Ashish Verma Penumatcha, Chia-Ching Lin, Tanay Gosavi, Shriram Shivaraman, Kirby Maxey
  • Publication number: 20210391478
    Abstract: Embodiments include two-dimensional (2D) semiconductor sheet transistors and methods of forming such devices. In an embodiment, a semiconductor device comprises a stack of 2D semiconductor sheets, where individual ones of the 2D semiconductor sheets have a first end and a second end opposite from the first end. In an embodiment, a first spacer is over the first end of the 2D semiconductor sheets, and a second spacer is over the second end of the 2D semiconductor sheets. Embodiments further comprise a gate electrode between the first spacer and the second spacer, a source contact adjacent to the first end of the 2D semiconductor sheets, and a drain contact adjacent to the second end of the 2D semiconductor sheets.
    Type: Application
    Filed: June 15, 2020
    Publication date: December 16, 2021
    Inventors: Kirby MAXEY, Chelsey DOROW, Kevin P. O'BRIEN, Carl NAYLOR, Ashish Verma PENUMATCHA, Tanay GOSAVI, Uygar E. AVCI, Shriram SHIVARAMAN