Patents by Inventor Tanay A. Gosavi

Tanay A. Gosavi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210408227
    Abstract: A transistor structure includes a first channel layer over a second channel layer, where the first and the second channel layers include a monocrystalline transition metal dichalcogenide (TMD). The transistor structure further includes a source material coupled to a first end of the first and second channel layers, a drain material coupled to a second end of the first and second channel layers, a gate electrode between the source material and the drain material, and between the first channel layer and the second channel layer and a gate dielectric between the gate electrode and each of the first channel layer and the second channel layer.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 30, 2021
    Applicant: Intel Corporation
    Inventors: Kevin O'Brien, Chelsey Dorow, Kirby Maxey, Carl Naylor, Shriram Shivaraman, Sudarat Lee, Tanay Gosavi, Chia-Ching Lin, Uygar Avci, Ashish Verma Penumatcha
  • Publication number: 20210408375
    Abstract: A transistor includes a channel including a first layer including a first monocrystalline transition metal dichalcogenide (TMD) material, where the first layer is stoichiometric and includes a first transition metal. The channel further includes a second layer above the first layer, the second layer including a second monocrystalline TMD material, where the second monocrystalline TMD material includes a second transition metal and oxygen, and where the second layer is sub-stoichiometric. The transistor further includes a gate electrode above a first portion of the channel layer, a gate dielectric layer between the channel layer and the gate electrode, a source contact on a second portion of the channel layer and a drain contact on a third portion of the channel layer, where the gate electrode is between drain contact and the source contact.
    Type: Application
    Filed: June 29, 2020
    Publication date: December 30, 2021
    Applicant: Intel Corporation
    Inventors: Chelsey Dorow, Kevin O'Brien, Carl Naylor, Uygar Avci, Sudarat Lee, Ashish Verma Penumatcha, Chia-Ching Lin, Tanay Gosavi, Shriram Shivaraman, Kirby Maxey
  • Publication number: 20210391478
    Abstract: Embodiments include two-dimensional (2D) semiconductor sheet transistors and methods of forming such devices. In an embodiment, a semiconductor device comprises a stack of 2D semiconductor sheets, where individual ones of the 2D semiconductor sheets have a first end and a second end opposite from the first end. In an embodiment, a first spacer is over the first end of the 2D semiconductor sheets, and a second spacer is over the second end of the 2D semiconductor sheets. Embodiments further comprise a gate electrode between the first spacer and the second spacer, a source contact adjacent to the first end of the 2D semiconductor sheets, and a drain contact adjacent to the second end of the 2D semiconductor sheets.
    Type: Application
    Filed: June 15, 2020
    Publication date: December 16, 2021
    Inventors: Kirby MAXEY, Chelsey DOROW, Kevin P. O'BRIEN, Carl NAYLOR, Ashish Verma PENUMATCHA, Tanay GOSAVI, Uygar E. AVCI, Shriram SHIVARAMAN
  • Publication number: 20210305398
    Abstract: A capacitor device includes a first electrode having a first metal alloy or a metal oxide, a relaxor ferroelectric layer adjacent to the first electrode, where the ferroelectric layer includes oxygen and two or more of lead, barium, manganese, zirconium, titanium, iron, bismuth, strontium, neodymium, potassium, or niobium and a second electrode coupled with the relaxor ferroelectric layer, where the second electrode includes a second metal alloy or a second metal oxide.
    Type: Application
    Filed: March 27, 2020
    Publication date: September 30, 2021
    Applicant: Intel Corporation
    Inventors: Sou-Chi Chang, Chia-Ching Lin, Nazila Haratipour, Tanay Gosavi, I-Cheng Tung, Seung Hoon Sung, Ian Young, Jack Kavalieros, Uygar Avci, Ashish Verma Penumatcha
  • Patent number: 11062752
    Abstract: A perpendicular spin orbit torque memory device includes a first electrode having tungsten and at least one of nitrogen or oxygen and a material layer stack on a portion of the first electrode. The material layer stack includes a free magnet, a fixed magnet above the first magnet, a tunnel barrier between the free magnet and the fixed magnet and a second electrode coupled with the fixed magnet.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: July 13, 2021
    Assignee: Intel Corporation
    Inventors: Tofizur Rahman, James Pellegren, Angeline Smith, Christopher Wiegand, Noriyuki Sato, Tanay Gosavi, Sasikanth Manipatruni, Kaan Oguz, Kevin O'Brien, Benjamin Buford, Ian Young
  • Publication number: 20200395406
    Abstract: A magnetic memory device comprising a plurality of memory cells is disclosed. The memory device includes an array of memory cells where each memory cell includes a first material layer having a ferromagnetic material, a second material layer having ruthenium, and a third material layer having bismuth and/or antimony. The second material layer is sandwiched between the first material layer and the third material in a stacked configuration.
    Type: Application
    Filed: June 17, 2019
    Publication date: December 17, 2020
    Applicant: INTEL CORPORATION
    Inventors: EMILY WALKER, CARL H. NAYLOR, KAAN OGUZ, KEVIN L. LIN, TANAY GOSAVI, CHRISTOPHER J. JEZEWSKI, CHIA-CHING LIN, BENJAMIN W. BUFORD, DMITRI E. NIKONOV, JOHN J. PLOMBON, IAN A. YOUNG, NORIYUKI SATO
  • Patent number: 10861861
    Abstract: An embodiment includes a system comprising: first, second, third, fourth, fifth, and sixth layers, (a) the second, third, fourth, and fifth layers being between the first and sixth layers, and (b) the fourth layer being between the third and fifth layers; a formation between the first and second layers, the formation including: (a) a material that is non-amorphous; and (b) first and second sidewalls; a capacitor between the second and sixth layers, the capacitor including: (a) the third, fourth, and fifth layers, and (b) an electrode that includes the third layer and an additional electrode that includes the fifth layer; and a switching device between the first and sixth layers; wherein: (a) the first layer includes a metal and the sixth layer includes the metal, and (b) the fourth layer includes a Perovskite material. Other embodiments are addressed herein.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: December 8, 2020
    Assignee: Intel Corporation
    Inventors: Chia-Ching Lin, Sasikanth Manipatruni, Tanay Gosavi, Dmitri Nikonov, Sou-Chi Chang, Uygar E. Avci, Ian A. Young
  • Publication number: 20200343301
    Abstract: A memory apparatus includes a first electrode having a spin orbit material. The memory apparatus further includes a first memory device on a portion of the first electrode and a first dielectric adjacent to a sidewall of the first memory device. The memory apparatus further includes a second memory device on a portion of the first electrode and a second dielectric adjacent to a sidewall of the second memory device. A second electrode is on and in contact with a portion of the first electrode, where the second electrode is between the first memory device and the second memory device. The second electrode has a lower electrical resistance than an electrical resistance of the first electrode. The memory apparatus further includes a first interconnect structure and a second interconnect, each coupled with the first electrode.
    Type: Application
    Filed: April 26, 2019
    Publication date: October 29, 2020
    Inventors: Benjamin Buford, Angeline Smith, Noriyuki Sato, Tanay Gosavi, Kaan Oguz, Christopher Wiegand, Kevin O'Brien, Tofizur Rahman, Gary Allen, Sasikanth Manipatruni, Emily Walker
  • Publication number: 20200313075
    Abstract: A memory device includes a first electrode including a spin-orbit material, a magnetic junction on a portion of the first electrode and a first structure including a dielectric on a portion of the first electrode. The first structure has a first sidewall and a second sidewall opposite to the first sidewall. The memory device further includes a second structure on a portion of the first electrode, where the second structure has a sidewall adjacent to the second sidewall of the first structure. The memory device further includes a first conductive interconnect above and coupled with each of the magnetic junction and the second structure and a second conductive interconnect below and coupled with the first electrode, where the second conductive interconnect is laterally distant from the magnetic junction and the second structure.
    Type: Application
    Filed: March 27, 2019
    Publication date: October 1, 2020
    Applicant: Intel Corporation
    Inventors: Noriyuki SATO, Angeline SMITH, Tanay GOSAVI, Sasikanth MANIPATRUNI, Kaan OGUZ, Kevin O'Brien, Benjamin BUFORD, Tofizur RAHMAN, Rohan PATIL, Nafees KABIR, Michael CHRISTENSON, Ian YOUNG, Hui Jae YOO, Christopher WIEGAND
  • Publication number: 20200312978
    Abstract: Techniques and mechanisms for providing electrical insulation or other protection of an integrated circuit (IC) device with a spacer structure which comprises an (anti)ferromagnetic material. In an embodiment, a transistor comprises doped source or drain regions and a channel region which are each disposed in a fin structure, wherein a gate electrode and an underlying dielectric layer of the transistor each extend over the channel region. Insulation spacers are disposed on opposite sides of the gate electrode, where at least a portion of one such insulation spacer comprises an (anti)ferroelectric material. Another portion of the insulation spacer comprises a non-(anti)ferroelectric material. In another embodiment, the two portions of the spacer are offset vertically from one another, wherein the (anti)ferroelectric portion forms a bottom of the spacer.
    Type: Application
    Filed: March 25, 2019
    Publication date: October 1, 2020
    Applicant: Intel Corporation
    Inventors: Jack KAVALIEROS, Ian YOUNG, Matthew METZ, Uygar AVCI, Chia-Ching LIN, Owen LOH, Seung Hoon SUNG, Aditya KASUKURTI, Sou-Chi CHANG, Tanay GOSAVI, Ashish Verma PENUMATCHA
  • Publication number: 20200313076
    Abstract: A spin orbit memory device includes a first electrode including a beta-phase material. The spin orbit memory device further includes a material layer stack on a portion of the first electrode. The material layer stack includes a first layer on the first electrode, where the first layer includes a bcc material such as molybdenum. The material layer stack further includes layers of a perpendicular magnetic tunnel junction (pMTJ) device on the first layer. The pMTJ device includes a free magnet structure on the first layer, where the free magnet structure includes a first magnet and a second magnet on the first magnet. The pMTJ device further includes a fixed magnet above the free magnet structure and a tunnel barrier layer between the magnet structure and the third magnet and a second electrode coupled with the second magnet.
    Type: Application
    Filed: March 27, 2019
    Publication date: October 1, 2020
    Applicant: Intel Corporation
    Inventors: Kaan OGUZ, Christopher WIEGAND, Noriyuki SATO, Angeline SMITH, Tanay GOSAVI
  • Publication number: 20200312908
    Abstract: A spin orbit memory device includes a material layer stack on a spin orbit electrode. The material layer stack includes a magnetic tunnel junction (MTJ) and a synthetic antiferromagnetic (SAF) structure on the MTJ. The SAF structure includes a first magnet structure and a second magnet structure separated by an antiferromagnetic coupling layer. The first magnet structure includes a first magnet and a second magnet separated by a single layer of a non-magnetic material such as platinum. The second magnet structure includes a stack of bilayers, where each bilayer includes a layer of platinum on a layer of a magnetic material such.
    Type: Application
    Filed: March 27, 2019
    Publication date: October 1, 2020
    Applicant: Intel Corporation
    Inventors: Kaan OGUZ, Christopher WIEGAND, Noriyuki SATO, Angeline SMITH, Tanay GOSAVI
  • Publication number: 20200227104
    Abstract: A perpendicular spin orbit torque memory device includes a first electrode having tungsten and at least one of nitrogen or oxygen and a material layer stack on a portion of the first electrode. The material layer stack includes a free magnet, a fixed magnet above the first magnet, a tunnel barrier between the free magnet and the fixed magnet and a second electrode coupled with the fixed magnet.
    Type: Application
    Filed: January 11, 2019
    Publication date: July 16, 2020
    Applicant: Intel Corporation
    Inventors: Tofizur Rahman, James Pellegren, Angeline Smith, Christopher Wiegand, Noriyuki Sato, Tanay Gosavi, Sasikanth Manipatruni, Kaan Oguz, Kevin O'Brien, Benjamin Buford, Ian Young
  • Publication number: 20200227474
    Abstract: A perpendicular spin orbit memory device includes a first electrode having a magnetic material and platinum and a material layer stack on a portion of the first electrode. The material layer stack includes a free magnet, a fixed magnet above the first electrode, a tunnel barrier between the free magnet and the fixed magnet and a second electrode coupled with the fixed magnet.
    Type: Application
    Filed: January 11, 2019
    Publication date: July 16, 2020
    Inventors: Kevin O'Brien, Christopher Wiegand, Tofizur Rahman, Noriyuki Sato, Gary Allen, James Pellegren, Angeline Smith, Tanay Gosavi, Sasikanth Manipatruni, Kaan Oguz, Benjamin Buford, Ian Young
  • Publication number: 20200227105
    Abstract: A memory device includes a spin orbit electrode structure having a dielectric structure including a first sidewall, a second sidewall opposite to the first sidewall, a top surface. The spin orbit electrode structure further includes an electrode having a spin orbit material adjacent to the dielectric structure, where the electrode has a first electrode portion on the top surface, a second electrode portion adjacent to the first sidewall and a third electrode portion adjacent to the second sidewall. The first electrode portion, the second electrode portion and the third electrode portion are contiguous. The spin orbit electrode structure further includes a conductive interconnect in contact with the second electrode portion or the third electrode portion. The memory device further includes a magnetic junction device on a portion of the top surface of the first electrode portion.
    Type: Application
    Filed: January 11, 2019
    Publication date: July 16, 2020
    Applicant: Intel Corporation
    Inventors: Tanay GOSAVI, Sasikanth MANIPATRUNI, Chia-Ching LIN, Kaan OGUZ, Ian YOUNG
  • Publication number: 20200212055
    Abstract: A memory device comprises a trench within an insulating layer. A bottom electrode material is along sidewalls and a bottom of the trench, the bottom electrode material conformal to a top surface of the insulating layer. A ferroelectric material is conformal to the bottom electrode. A top electrode material is conformal to the ferroelectric material, wherein the bottom electrode material, the ferroelectric material and the top electrode material all extend above and across the top surface of the insulating layer.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 2, 2020
    Inventors: Chia-Ching LIN, Sasikanth MANIPATRUNI, Tanay GOSAVI, Dmitri NIKONOV, Sou-Chi CHANG, Uygar E. AVCI, Ian A. YOUNG
  • Publication number: 20200212193
    Abstract: Describe is a resonator that uses anti-ferroelectric (AFE) materials in the gate of a transistor as a dielectric. The use of AFE increases the strain/stress generated in the gate of the FinFET. Along with the usual capacitive drive, which is boosted with the increased polarization, additional current drive is also achieved from the piezoelectric response generated to due to AFE material. In some embodiments, the acoustic mode of the resonator is isolated using phononic gratings all around the resonator using the metal line above and vias' to body and dummy fins on the side. As such, a Bragg reflector is formed above or below the AFE based transistor. Increased drive signal from the AFE results in larger output signal and larger bandwidth.
    Type: Application
    Filed: January 2, 2019
    Publication date: July 2, 2020
    Applicant: Intel Corporation Santa Clara
    Inventors: Tanay Gosavi, Chia-ching Lin, Raseong Kim, Ashish Verma Penumatcha, Uygar Avci, Ian Young
  • Publication number: 20200212224
    Abstract: Embodiments herein describe techniques for a semiconductor device including a gate stack with a ferroelectric-oxide layer above a channel layer and in contact with the channel layer, and a top electrode above the ferroelectric-oxide layer. The ferroelectric-oxide layer includes a domain wall between an area under a nucleation point of the top electrode and above a separation line of the channel layer between an ON state portion and an OFF state portion of the channel layer. A resistance between a source electrode and a drain electrode is modulated in a range between a first resistance value and a second resistance value, dependent on a position of the domain wall within the ferroelectric-oxide layer, a position of the ON state portion of the channel layer, and a position of the OFF state portion of the channel layer. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 26, 2018
    Publication date: July 2, 2020
    Inventors: Ashish Verma PENUMATCHA, Tanay GOSAVI, Uygar AVCI, Ian A. YOUNG
  • Publication number: 20200212532
    Abstract: Describe is a resonator that uses ferroelectric (FE) material in a capacitive structure. The resonator includes a first plurality of metal lines extending in a first direction; an array of capacitors comprising ferroelectric material; a second plurality of metal lines extending in the first direction, wherein the array of capacitors is coupled between the first and second plurality of metal lines; and a circuitry to switch polarization of at least one capacitor of the array of capacitors. The switching of polarization regenerates acoustic waves. In some embodiments, the acoustic mode of the resonator is isolated using phononic gratings all around the resonator using metal lines above and adjacent to the FE based capacitors.
    Type: Application
    Filed: January 2, 2019
    Publication date: July 2, 2020
    Applicant: Intel Corporation
    Inventors: Tanay Gosavi, Chia-ching Lin, Raseong Kim, Ashish Verma Penumatcha, Uygar Avci, Ian Young
  • Publication number: 20200212194
    Abstract: Describe is a resonator that uses ferroelectric (FE) materials in the gate of a transistor as a dielectric. The use of FE increases the strain/stress generated in the gate of the FinFET. Along with the usual capacitive drive, which is boosted with the increased polarization, FE material expands or contacts depending on the applied electric field on the gate of the transistor. As such, acoustic waves are generated by switching polarization of the FE materials. In some embodiments, the acoustic mode of the resonator is isolated using phononic gratings all around the resonator using the metal line above and vias' to body and dummy fins on the side. As such, a Bragg reflector is formed above the FE based transistor.
    Type: Application
    Filed: January 2, 2019
    Publication date: July 2, 2020
    Applicant: Intel Corporation
    Inventors: Tanay Gosavi, Chia-ching Lin, Raseong Kim, Ashish Verma Penumatcha, Uygar Avci, Ian Young