Patents by Inventor Thai-Cheng Chua

Thai-Cheng Chua has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200402769
    Abstract: Embodiments include a plasma processing tool that includes a processing chamber, and a plurality of modular microwave sources coupled to the processing chamber. In an embodiment, the plurality of modular microwave sources include an array of applicators that are positioned over a dielectric body that forms a portion of an outer wall of the processing chamber. The array of applicators may be coupled to the dielectric body. Additionally, the plurality of modular microwave sources may include an array of microwave amplification modules. In an embodiment, each microwave amplification module may be coupled to at least one of the applicators in the array of applicators. According to an embodiment, the dielectric body be planar, non-planar, symmetric, or non-symmetric. In yet another embodiment, the dielectric body may include a plurality of recesses. In such an embodiment, at least one applicator may be positioned in at least one of the recesses.
    Type: Application
    Filed: July 6, 2020
    Publication date: December 24, 2020
    Inventors: Thai Cheng Chua, Farzad Houshmand, Christian Amormino, Philip Allan Kraus
  • Publication number: 20200381217
    Abstract: Embodiments include a modular microwave source. In an embodiment, the modular microwave source comprises a voltage control circuit, a voltage controlled oscillator, where an output voltage from the voltage control circuit drives oscillation in the voltage controlled oscillator. The modular microwave source may also include a solid state microwave amplification module coupled to the voltage controlled oscillator. In an embodiment, the solid state microwave amplification module amplifies an output from the voltage controlled oscillator. The modular microwave source may also include an applicator coupled to the solid state microwave amplification module, where the applicator is a dielectric resonator.
    Type: Application
    Filed: August 14, 2020
    Publication date: December 3, 2020
    Inventors: Philip Allan Kraus, Thai Cheng Chua
  • Publication number: 20200343065
    Abstract: Embodiments disclosed herein include a high-frequency emission module. In an embodiment, the high-frequency emission module comprises a solid state high-frequency power source, an applicator for propagating high-frequency electromagnetic radiation from the power source, and a thermal break coupled between the power source and the applicator. In an embodiment, the thermal break comprises a substrate, a trace on the substrate, and a ground plane.
    Type: Application
    Filed: March 24, 2020
    Publication date: October 29, 2020
    Inventors: Thai Cheng Chua, Hanh Nguyen, Philip Allan Kraus
  • Publication number: 20200303167
    Abstract: Embodiments described herein include a modular high-frequency emission source comprising a plurality of high-frequency emission modules and a phase controller. In an embodiment, each high-frequency emission module comprises an oscillator module, an amplification module, and an applicator. In an embodiment, each oscillator module comprises a voltage control circuit and a voltage controlled oscillator. In an embodiment, each amplification module is coupled to an oscillator module, in an embodiment, each applicator is coupled to an amplification module. In an embodiment, the phase controller is communicatively coupled to each oscillator module.
    Type: Application
    Filed: June 8, 2020
    Publication date: September 24, 2020
    Inventors: Philip Allan Kraus, Thai Cheng Chua, Christian Amormino, Dmitry A. Dzilno
  • Patent number: 10763150
    Abstract: The present disclosure generally relates to plasma assisted or plasma enhanced processing chambers. More specifically, embodiments herein relate to electrostatic chucking (ESC) substrate supports configured to provide independent pulses of direct-current (“DC”) voltage through a switching system to electrodes disposed in the ESC substrate support. In some embodiments, the switching system can independently alter the frequency and duty cycle of the pulsed DC voltage that is coupled to each electrode. In some embodiments, during processing of the substrate, the process rate, such as etch rate or deposition rate, can be controlled independently in regions of the substrate because the process rate is a function of the frequency and duty cycle of the pulsed DC voltage. The processing uniformity of the process performed on the substrate is improved.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: September 1, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Roger Alan Lindley, Philip Allan Kraus, Thai Cheng Chua
  • Patent number: 10748745
    Abstract: Embodiments include a modular microwave source. In an embodiment, the modular microwave source comprises a voltage control circuit, a voltage controlled oscillator, where an output voltage from the voltage control circuit drives oscillation in the voltage controlled oscillator. The modular microwave source may also include a solid state microwave amplification module coupled to the voltage controlled oscillator. In an embodiment, the solid state microwave amplification module amplifies an output from the voltage controlled oscillator. The modular microwave source may also include an applicator coupled to the solid state microwave amplification module, where the applicator is a dielectric resonator.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: August 18, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Philip Allan Kraus, Thai Cheng Chua
  • Patent number: 10720311
    Abstract: Embodiments described herein include a modular high-frequency emission source comprising a plurality of high-frequency emission modules and a phase controller. In an embodiment, each high-frequency emission module comprises an oscillator module, an amplification module, and an applicator. In an embodiment, each oscillator module comprises a voltage control circuit and a voltage controlled oscillator. In an embodiment, each amplification module is coupled to an oscillator module, in an embodiment, each applicator is coupled to an amplification module. In an embodiment, the phase controller is communicatively coupled to each oscillator module.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: July 21, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Philip Allan Kraus, Thai Cheng Chua, Christian Amormino, Dmitry A. Dzilno
  • Patent number: 10714372
    Abstract: The present disclosure generally relates to plasma assisted or plasma enhanced processing chambers. More specifically, embodiments herein relate to electrostatic chucking (ESC) substrate supports configured to provide independent pulses of DC voltage through a switching system to electrodes disposed through the ESC substrate support, or to electrodes disposed on a surface of the ESC, or to electrodes embedded in the ESC substrate support. The switching system can independently alter the frequency and duty cycle of the pulsed DC voltage that is coupled to each electrode. During processing of the substrate, the process rate, such as etch rate or deposition rate, can be controlled independently in regions of the substrate because the process rate is a function of the frequency and duty cycle of the pulsed DC voltage. The processing uniformity of the process performed on the substrate is improved.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: July 14, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Thai Cheng Chua, Philip Allan Kraus, Travis Lee Koh, Christian Amormino, Jaeyong Cho
  • Patent number: 10707058
    Abstract: Embodiments include a plasma processing tool that includes a processing chamber, and a plurality of modular microwave sources coupled to the processing chamber. In an embodiment, the plurality of modular microwave sources include an array of applicators that are positioned over a dielectric body that forms a portion of an outer wall of the processing chamber. The array of applicators may be coupled to the dielectric body. Additionally, the plurality of modular microwave sources may include an array of microwave amplification modules. In an embodiment, each microwave amplification module may be coupled to at least one of the applicators in the array of applicators. According to an embodiment, the dielectric body be planar, non-planar, symmetric, or non-symmetric. In yet another embodiment, the dielectric body may include a plurality of recesses. In such an embodiment, at least one applicator may be positioned in at least one of the recesses.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: July 7, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Thai Cheng Chua, Farzad Houshmand, Christian Amormino, Philip Allan Kraus
  • Publication number: 20200176241
    Abstract: Embodiments disclosed herein include methods of forming high quality silicon nitride films. In an embodiment, a method of depositing a film on a substrate may comprise forming a silicon nitride film over a surface of the substrate in a first processing volume with a deposition process, and treating the silicon nitride film in a second processing volume, wherein treating the silicon nitride film comprises exposing the film to a plasma induced by a modular high-frequency plasma source. In an embodiment, a sheath potential of the plasma is less than 100 V, and a power density of the high-frequency plasma source is approximately 5 W/cm2 or greater, approximately 10 W/cm2 or greater, or approximately 20 W/cm2 or greater.
    Type: Application
    Filed: November 6, 2019
    Publication date: June 4, 2020
    Inventors: Vinayak Veer Vats, Hang Yu, Philip Allan Kraus, Sanjay G. Kamath, William John Durand, Lakmal Charidu Kalutarage, Abhijit B. Mallick, Changling Li, Deenesh Padhi, Mark Joseph Saly, Thai Cheng Chua, Mihaela A. Balseanu
  • Publication number: 20200118861
    Abstract: A method and apparatus for biasing regions of a substrate in a plasma assisted processing chamber are provided. Biasing of the substrate, or regions thereof, increases the potential difference between the substrate and a plasma formed in the processing chamber thereby accelerating ions from the plasma towards the active surfaces of the substrate regions. A plurality of bias electrodes herein are spatially arranged across the substrate support in a pattern that is advantageous for managing uniformity of processing results across the substrate.
    Type: Application
    Filed: December 13, 2019
    Publication date: April 16, 2020
    Inventors: Philip Allan KRAUS, Thai Cheng CHUA, Jaeyong CHO
  • Publication number: 20200066490
    Abstract: Embodiments described herein include a modular high-frequency emission source comprising a plurality of high-frequency emission modules and a phase controller. In an embodiment, each high-frequency emission module comprises an oscillator module, an amplification module, and an applicator. In an embodiment, each oscillator module comprises a voltage control circuit and a voltage controlled oscillator. In an embodiment, each amplification module is coupled to an oscillator module, in an embodiment, each applicator is coupled to an amplification module. In an embodiment, the phase controller is communicatively coupled to each oscillator module.
    Type: Application
    Filed: October 30, 2019
    Publication date: February 27, 2020
    Inventors: Philip Allan Kraus, Thai Cheng Chua, Christian Amormino, Dmitry A. Dzilno
  • Patent number: 10507549
    Abstract: The present disclosure provides three-dimensional (3D) objects, 3D printing processes, as well as methods, apparatuses and systems for the production of a 3D object. Methods, apparatuses and systems of the present disclosure may reduce or eliminate the need for auxiliary supports. The present disclosure provides three dimensional (3D) objects printed utilizing the printing processes, methods, apparatuses and systems described herein.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: December 17, 2019
    Assignee: VELO3D, INC.
    Inventors: Benyamin Buller, Erel Milshtein, Thai Cheng Chua
  • Patent number: 10510575
    Abstract: A method and apparatus for biasing regions of a substrate in a plasma assisted processing chamber are provided. Biasing of the substrate, or regions thereof, increases the potential difference between the substrate and a plasma formed in the processing chamber thereby accelerating ions from the plasma towards the active surfaces of the substrate regions. A plurality of bias electrodes herein are spatially arranged across the substrate support in a pattern that is advantageous for managing uniformity of processing results across the substrate.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: December 17, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Philip Allan Kraus, Thai Cheng Chua, Jaeyong Cho
  • Patent number: 10504699
    Abstract: Embodiments described herein include a modular high-frequency emission source comprising a plurality of high-frequency emission modules and a phase controller. In an embodiment, each high-frequency emission module comprises an oscillator module, an amplification module, and an applicator. In an embodiment, each oscillator module comprises a voltage control circuit and a voltage controlled oscillator. In an embodiment, each amplification module is coupled to an oscillator module, in an embodiment, each applicator is coupled to an amplification module. In an embodiment, the phase controller is communicatively coupled to each oscillator module.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: December 10, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Philip Allan Kraus, Thai Cheng Chua, Christian Amormino, Dmitry A. Dzilno
  • Patent number: 10493564
    Abstract: The present disclosure provides three-dimensional (3D) objects, 3D printing processes, as well as methods, apparatuses and systems for the production of a 3D object. Methods, apparatuses and systems of the present disclosure may reduce or eliminate the need for auxiliary supports. The present disclosure provides three dimensional (3D) objects printed utilizing the printing processes, methods, apparatuses and systems described herein.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: December 3, 2019
    Assignee: Velo3D, Inc.
    Inventors: Benyamin Buller, Erel Milshtein, Thai Cheng Chua
  • Publication number: 20190326095
    Abstract: Embodiments include a modular high-frequency emission source. In an embodiment, the modular high-frequency emission source includes a plurality of high-frequency emission modules, where each high-frequency emission module comprises and oscillator module, an amplification module, and an applicator. In an embodiment the oscillator module comprises a voltage control circuit and a voltage controlled oscillator. In an embodiment, the amplification module is coupled to the oscillator module. In an embodiment, the applicator is coupled to the amplification module. In an embodiment, each high-frequency emission module includes a different oscillator module.
    Type: Application
    Filed: April 20, 2018
    Publication date: October 24, 2019
    Inventors: Thai Cheng CHUA, Christian AMORMINO, Hanh NGUYEN, Kallol BERA, Philip Allan KRAUS
  • Publication number: 20190326098
    Abstract: Embodiments described herein include a processing tool that comprises a processing chamber, a chuck for supporting a substrate in the processing chamber, a dielectric window forming a portion of the processing chamber, and a modular high-frequency emission source. In an embodiment, the modular high-frequency emission source comprises a plurality of high-frequency emission modules. In an embodiment, each high-frequency emission module comprises, an oscillator module, amplification module, and an applicator. In an embodiment, the amplification module is coupled to the oscillator module. In an embodiment, the applicator is coupled to the amplification module. In an embodiment, the applicator is positioned proximate to the dielectric window.
    Type: Application
    Filed: April 20, 2018
    Publication date: October 24, 2019
    Inventors: Hanh NGUYEN, Thai Cheng CHUA, Philip Allan KRAUS
  • Publication number: 20190326096
    Abstract: Embodiments described herein include a modular high-frequency emission source comprising a plurality of high-frequency emission modules and a phase controller. In an embodiment, each high-frequency emission module comprises an oscillator module, an amplification module, and an applicator. In an embodiment, each oscillator module comprises a voltage control circuit and a voltage controlled oscillator. In an embodiment, each amplification module is coupled to an oscillator module, in an embodiment, each applicator is coupled to an amplification module. In an embodiment, the phase controller is communicatively coupled to each oscillator module.
    Type: Application
    Filed: April 20, 2018
    Publication date: October 24, 2019
    Inventors: PHILIP ALLAN KRAUS, THAI CHENG CHUA, CHRISTIAN AMORMINO, DMITRY A. DZILNO
  • Publication number: 20190326090
    Abstract: Embodiments described herein include an applicator frame for a processing chamber. In an embodiment, the applicator frame comprises a first major surface of the applicator frame and a second major surface of the applicator frame opposite the first major surface. In an embodiment, the applicator frame further comprises a through hole, wherein the through hole extends entirely through the applicator frame. In an embodiment, the applicator frame also comprises a lateral channel embedded in the applicator frame. In an embodiment the lateral channel intersects the through hole.
    Type: Application
    Filed: April 20, 2018
    Publication date: October 24, 2019
    Inventors: Hahn NGUYEN, Thai Cheng CHUA, Philip Allan KRAUS