Patents by Inventor Thai-Cheng Chua

Thai-Cheng Chua has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190259598
    Abstract: Embodiments includes methods for forming a silicon nitride film on a substrate in a deposition chamber. In embodiments, the substrate is sequentially exposed to a sequence of processing gases, comprising: a silicon halide precursor that absorbs onto a surface of the substrate to form an absorbed layer of the silicon halide, a first reacting gas that includes N2 and one or both of Ar and He, and a second reacting gas comprising a hydrogen-containing gas and one or more of Ar, He, and N2. In embodiments, the hydrogen-containing gas includes at least one of H2 (molecular hydrogen), NH3 (ammonia), N2H2 (diazene), N2H4 (hydrazine), and HN3 (hydrogen azide). Embodiments may include repeating the sequence until a desired thickness of the silicon nitride film is obtained.
    Type: Application
    Filed: February 20, 2018
    Publication date: August 22, 2019
    Inventors: Hanhong CHEN, Kelvin CHAN, Philip Allan KRAUS, Thai Cheng CHUA
  • Publication number: 20190088521
    Abstract: The present disclosure generally relates to plasma assisted or plasma enhanced processing chambers. More specifically, embodiments herein relate to electrostatic chucking (ESC) substrate supports configured to provide independent pulses of DC voltage through a switching system to electrodes disposed through the ESC substrate support, or to electrodes disposed on a surface of the ESC, or to electrodes embedded in the ESC substrate support. The switching system can independently alter the frequency and duty cycle of the pulsed DC voltage that is coupled to each electrode. During processing of the substrate, the process rate, such as etch rate or deposition rate, can be controlled independently in regions of the substrate because the process rate is a function of the frequency and duty cycle of the pulsed DC voltage. The processing uniformity of the process performed on the substrate is improved.
    Type: Application
    Filed: September 20, 2017
    Publication date: March 21, 2019
    Inventors: Thai Cheng CHUA, Philip Allan KRAUS, Travis Lee KOH, Christian AMORMINO, Jaeyong CHO
  • Publication number: 20190088522
    Abstract: The present disclosure generally relates to plasma assisted or plasma enhanced processing chambers. More specifically, embodiments herein relate to electrostatic chucking (ESC) substrate supports configured to provide independent pulses of direct-current (“DC”) voltage through a switching system to electrodes disposed in the ESC substrate support. In some embodiments, the switching system can independently alter the frequency and duty cycle of the pulsed DC voltage that is coupled to each electrode. In some embodiments, during processing of the substrate, the process rate, such as etch rate or deposition rate, can be controlled independently in regions of the substrate because the process rate is a function of the frequency and duty cycle of the pulsed DC voltage. The processing uniformity of the process performed on the substrate is improved.
    Type: Application
    Filed: September 20, 2017
    Publication date: March 21, 2019
    Inventors: Roger Alan LINDLEY, Philip Allan KRAUS, Thai Cheng CHUA
  • Publication number: 20190088520
    Abstract: A method and apparatus for biasing regions of a substrate in a plasma assisted processing chamber are provided. Biasing of the substrate, or regions thereof, increases the potential difference between the substrate and a plasma formed in the processing chamber thereby accelerating ions from the plasma towards the active surfaces of the substrate regions. A plurality of bias electrodes herein are spatially arranged across the substrate support in a pattern that is advantageous for managing uniformity of processing results across the substrate.
    Type: Application
    Filed: September 20, 2017
    Publication date: March 21, 2019
    Inventors: Philip Allan KRAUS, Thai Cheng CHUA, Jaeyong CHO
  • Publication number: 20180323043
    Abstract: Embodiments include methods and apparatuses that include a plasma processing tool that includes a plurality of magnets. In one embodiment, a plasma processing tool may comprise a processing chamber and a plurality of modular microwave sources coupled to the processing chamber. In an embodiment, the plurality of modular microwave sources includes an array of applicators positioned over a dielectric that forms a portion of an outer wall of the processing chamber, and an array of microwave amplification modules. In an embodiment, each microwave amplification module is coupled to one or more of the applicators in the array of applicators. In an embodiment, the plasma processing tool may include a plurality of magnets. In an embodiment, the magnets are positioned around one or more of the applicators.
    Type: Application
    Filed: May 6, 2017
    Publication date: November 8, 2018
    Inventors: Philip Allan Kraus, Thai Cheng Chua, Mani Subramani
  • Publication number: 20180294143
    Abstract: Embodiments include a plasma processing tool that includes a processing chamber, and a plurality of modular microwave sources coupled to the processing chamber. In an embodiment, the plurality of modular microwave sources include an array of applicators that are positioned over a dielectric body that forms a portion of an outer wall of the processing chamber. The array of applicators may be coupled to the dielectric body. Additionally, the plurality of modular microwave sources may include an array of microwave amplification modules. In an embodiment, each microwave amplification module may be coupled to at least one of the applicators in the array of applicators. According to an embodiment, the dielectric body be planar, non-planar, symmetric, or non-symmetric. In yet another embodiment, the dielectric body may include a plurality of recesses. In such an embodiment, at least one applicator may be positioned in at least one of the recesses.
    Type: Application
    Filed: April 11, 2017
    Publication date: October 11, 2018
    Inventors: Thai Cheng Chua, Farzad Houshmand, Christian Amormino, Philip Allan Kraus
  • Publication number: 20180117845
    Abstract: The present disclosure provides various three-dimensional (3D) objects, some of which comprise a wire or 3D plane. Disclosed herein are methods, apparatus, software, and systems for their generation that may reduce or eliminate the need for auxiliary support during the formation of the 3D objects. The methods, apparatuses, software, and systems of the present disclosure may allow the formation of objects with short, diminished number, and/or spaced apart auxiliary support structures. These 3D objects may be objects with adjacent surfaces such as hanging structures and planar hollow 3D objects.
    Type: Application
    Filed: November 9, 2017
    Publication date: May 3, 2018
    Inventors: Benyamin BULLER, Kimon SYMEONIDIS, Erel MILSHTEIN, Thai Cheng CHUA
  • Publication number: 20180053634
    Abstract: Embodiments include a modular microwave source. In an embodiment, the modular microwave source comprises a voltage control circuit, a voltage controlled oscillator, where an output voltage from the voltage control circuit drives oscillation in the voltage controlled oscillator. The modular microwave source may also include a solid state microwave amplification module coupled to the voltage controlled oscillator. In an embodiment, the solid state microwave amplification module amplifies an output from the voltage controlled oscillator. The modular microwave source may also include an applicator coupled to the solid state microwave amplification module, where the applicator is a dielectric resonator.
    Type: Application
    Filed: August 16, 2016
    Publication date: February 22, 2018
    Inventors: Philip Allan KRAUS, Thai Cheng CHUA
  • Publication number: 20170334024
    Abstract: The present disclosure provides three-dimensional (3D) objects, 3D printing processes, as well as methods, apparatuses and systems for the production of a 3D object. Methods, apparatuses and systems of the present disclosure may reduce or eliminate the need for auxiliary supports. The present disclosure provides three dimensional (3D) objects printed utilizing the printing processes, methods, apparatuses and systems described herein.
    Type: Application
    Filed: August 3, 2017
    Publication date: November 23, 2017
    Inventors: Benyamin BULLER, Erel MILSHTEIN, Thai Cheng CHUA
  • Patent number: 9821411
    Abstract: The present disclosure provides three-dimensional (3D) objects, 3D printing processes, as well as methods, apparatuses and systems for the production of a 3D object. Methods, apparatuses and systems of the present disclosure may reduce or eliminate the need for auxiliary supports. The present disclosure provides three dimensional (3D) objects printed utilizing the printing processes, methods, apparatuses and systems described herein.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: November 21, 2017
    Assignee: VELO3D, INC.
    Inventors: Benyamin Buller, Erel Milshtein, Thai Cheng Chua
  • Publication number: 20160297006
    Abstract: The present disclosure provides three-dimensional (3D) objects, 3D printing processes, as well as methods, apparatuses and systems for the production of a 3D object. Methods, apparatuses and systems of the present disclosure may reduce or eliminate the need for auxiliary supports. The present disclosure provides three dimensional (3D) objects printed utilizing the printing processes, methods, apparatuses and systems described herein.
    Type: Application
    Filed: June 21, 2016
    Publication date: October 13, 2016
    Inventors: Benyamin Buller, Erel Milshtein, Thai Cheng Chua
  • Patent number: 9399256
    Abstract: The present disclosure provides three-dimensional (3D) objects, 3D printing processes, as well as methods, apparatuses and systems for the production of a 3D object. Methods, apparatuses and systems of the present disclosure may reduce or eliminate the need for auxiliary supports. The present disclosure provides three dimensional (3D) objects printed utilizing the printing processes, methods, apparatuses and systems described herein.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: July 26, 2016
    Assignee: VELO3D, INC.
    Inventors: Benyamin Buller, Erel Milshtein, Thai Cheng Chua
  • Publication number: 20150367415
    Abstract: The present disclosure provides three-dimensional (3D) objects, 3D printing processes, as well as methods, apparatuses and systems for the production of a 3D object. Methods, apparatuses and systems of the present disclosure may reduce or eliminate the need for auxiliary supports. The present disclosure provides three dimensional (3D) objects printed utilizing the printing processes, methods, apparatuses and systems described herein.
    Type: Application
    Filed: June 19, 2015
    Publication date: December 24, 2015
    Inventors: Benyamin Buller, Erel Milshtein, Thai Cheng Chua
  • Publication number: 20150367416
    Abstract: The present disclosure provides three-dimensional (3D) objects, 3D printing processes, as well as methods, apparatuses and systems for the production of a 3D object. Methods, apparatuses and systems of the present disclosure may reduce or eliminate the need for auxiliary supports. The present disclosure provides three dimensional (3D) objects printed utilizing the printing processes, methods, apparatuses and systems described herein.
    Type: Application
    Filed: June 19, 2015
    Publication date: December 24, 2015
    Inventors: Benyamin Buller, Erel Milshtein, Thai Cheng Chua
  • Publication number: 20150367446
    Abstract: The present disclosure provides three-dimensional (3D) objects, 3D printing processes, as well as methods, apparatuses and systems for the production of a 3D object. Methods, apparatuses and systems of the present disclosure may reduce or eliminate the need for auxiliary supports. The present disclosure provides three dimensional (3D) objects printed utilizing the printing processes, methods, apparatuses and systems described herein.
    Type: Application
    Filed: June 19, 2015
    Publication date: December 24, 2015
    Inventors: Benyamin Buller, Erel Milshtein, Thai Cheng Chua
  • Patent number: 9081245
    Abstract: Embodiments provided herein describe electrochromic devices and methods for forming electrochromic devices. The electrochromic devices include a transparent substrate, a transparent conducting oxide layer coupled to the transparent substrate, and a layer of electrochromic material coupled to the transparent conducting oxide layer. The transparent conducting oxide layer includes indium and zinc.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: July 14, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Minh Huu Le, Thai Cheng Chua, Guowen Ding, Minh Anh Nguyen, Yu Wang, Guizhen Zhang
  • Patent number: 8975166
    Abstract: Methods and apparatus for generating and delivering atomic hydrogen to the growth front during the deposition of a III-V film are provided. The apparatus adapts HWCVD technology to a system wherein the Group III precursor and the Group V precursor are delivered to the surface in isolated processing environments within the system. Multiple HWCVD units may be incorporated so that the atomic hydrogen parameters may be varied in a combinatorial manner for the development of III-V films.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: March 10, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Thai Cheng Chua, Timothy Joseph Franklin, Philip A. Kraus
  • Patent number: 8900897
    Abstract: Devices are described including a component comprising an alloy of AlN and AlSb. The component has an index of refraction substantially the same as that of a semiconductor in the optoelectronic device, and has high transparency at wavelengths of light used in the optoelectronic device. The component is in contact with the semiconductor in the optoelectronic device. The alloy comprises between 0% and 100% AlN by weight and between 0% and 100% AlSb by weight. The semiconductor can be a III-V semiconductor such as GaAs or AlGaInP. The component can be used as a transparent insulator. The alloy can also be doped to form either a p-type conductor or an n-type conductor, and the component can be used as a transparent conductor. Methods of making and devices utilizing the alloy are also disclosed.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: December 2, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Philip Kraus, Thai Cheng Chua, Yoga Saripalli
  • Publication number: 20140191262
    Abstract: Devices are described including a component comprising an alloy of AlN and AlSb. The component has an index of refraction substantially the same as that of a semiconductor in the optoelectronic device, and has high transparency at wavelengths of light used in the optoelectronic device. The component is in contact with the semiconductor in the optoelectronic device. The alloy comprises between 0% and 100% AlN by weight and between 0% and 100% AlSb by weight. The semiconductor can be a III-V semiconductor such as GaAs or AlGaInP. The component can be used as a transparent insulator. The alloy can also be doped to form either a p-type conductor or an n-type conductor, and the component can be used as a transparent conductor. Methods of making and devices utilizing the alloy are also disclosed.
    Type: Application
    Filed: January 10, 2013
    Publication date: July 10, 2014
    Applicant: Intermolecular Inc.
    Inventors: Philip Kraus, Thai Cheng Chua, Yoga Saripalli
  • Publication number: 20140124788
    Abstract: Chemical vapor deposition (CVD) systems for forming layers on a substrate are disclosed. Embodiments of the system comprise at least two processing chambers that may be linked in a cluster tool. A first processing chamber provides a chamber having a controlled environmental temperature and pressure and containing a first environment for performing CVD on a substrate, and a second environment for contacting the substrate with a plasma; a substrate transport system capable of positioning a substrate for sequential processing in each environment, and a gas control system capable of maintaining isolation. A second processing chamber provides a CVD system. Methods of forming layers on a substrate comprise forming one or more layers in each processing chamber. The systems and methods are suitable for preparing Group III-V, Group II-VI or Group IV thin film devices.
    Type: Application
    Filed: November 6, 2012
    Publication date: May 8, 2014
    Applicant: INTERMOLECULAR, INC.
    Inventors: Philip Kraus, Boris Borisov, Thai Cheng Chua, Sandeep Nijhawan