Patents by Inventor Thomas Basler

Thomas Basler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11367683
    Abstract: A silicon carbide device includes a silicon carbide substrate, a contact layer including nickel, silicon and aluminum, a barrier layer structure including titanium and tungsten, and a metallization layer including copper. The contact layer is located on the silicon carbide substrate. The contact layer is located between the silicon carbide substrate and at least a part of the barrier layer structure. The barrier layer structure is located between the silicon carbide substrate and the metallization layer.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: June 21, 2022
    Assignee: Infineon Technologies AG
    Inventors: Edward Fuergut, Ravi Keshav Joshi, Ralf Siemieniec, Thomas Basler, Martin Gruber, Jochen Hilsenbeck, Dethard Peters, Roland Rupp, Wolfgang Scholz
  • Publication number: 20220149156
    Abstract: A semiconductor device includes: a silicon carbide semiconductor body having a source region of a first conductivity type and a body region of a second conductivity type; and a trench structure extending from a first surface into the silicon carbide semiconductor body along a vertical direction, the trench structure having a gate electrode and a gate dielectric. The trench structure is stripe-shaped and runs along a longitudinal direction that is perpendicular to the vertical direction. The source region includes a first source sub-region and a second source sub-region alternately arranged along the longitudinal direction. A doping concentration profile of the first source sub-region along the vertical direction differs from a doping concentration profile of the second source sub-region along the vertical direction. A corresponding method of manufacturing the semiconductor device is also described.
    Type: Application
    Filed: January 25, 2022
    Publication date: May 12, 2022
    Inventors: Thomas Basler, Caspar Leendertz, Hans-Joachim Schulze
  • Publication number: 20220085601
    Abstract: An apparatus includes a unipolar power transistor and an RC snubber. The RC snubber has a capacitor between a poly silicon structure and a semiconductor substrate. The capacitor has a p-n junction. The RC snubber has a resistor between a source of the unipolar power transistor and a first layer forming the capacitor. The unipolar transistor and the RC snubber are coupled in parallel. The RC snubber and the unipolar power transistor are formed monolithically on the semiconductor substrate.
    Type: Application
    Filed: September 14, 2020
    Publication date: March 17, 2022
    Inventors: Dethard PETERS, Thomas BASLER, Paul SOCHOR
  • Patent number: 11276754
    Abstract: An embodiment of a semiconductor device includes a silicon carbide semiconductor body including source and body regions of opposite conductivity types. A trench structure extends from a first surface into the silicon carbide semiconductor body along a vertical direction, and includes a gate electrode and a gate dielectric. A contact is electrically connected to the source region at the first surface. The source region includes a first source sub-region directly adjoining the contact at a source contact area of the first surface, a second source sub-region, and a third source sub-region. The second sub-region is arranged between the first and third sub-regions along the vertical direction. A doping concentration profile along the vertical direction of the source region includes a doping concentration minimum in the second sub-region and a doping concentration maximum in the third sub-region. Each of the second and third sub-regions overlaps with the source contact area.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: March 15, 2022
    Assignee: Infineon Technologies AG
    Inventors: Thomas Basler, Caspar Leendertz, Hans-Joachim Schulze
  • Patent number: 11264464
    Abstract: A silicon carbide device includes a transistor cell with a front side doping region, a body region, and a drift region. The body region includes a first portion having a first average net doping concentration and a second portion having a second average net doping concentration. The first portion and the second portion have an extension of at least 50 nm in a vertical direction. The first average net doping concentration is at least two times the second average net doping concentration, and the first average net doping concentration is at least 1ยท1017 cm?3.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: March 1, 2022
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Hans-Joachim Schulze, Thomas Basler, Andre Rainer Stegner
  • Publication number: 20210343835
    Abstract: A semiconductor component includes: gate structures extending from a first surface into an SiC semiconductor body; a drift zone of a first conductivity type formed in the SiC semiconductor body; first mesas and second mesas arranged between the gate structures in the SiC semiconductor body; body areas of a second conductivity type arranged in the first mesas and the second mesas, the body areas each adjoining a first side wall of one of the gate structures; first shielding areas of the second conductivity type adjoining a second side wall of one of the gate structures; second shielding areas of the second conductivity type adjoining the body areas in the second mesas; and diode areas of the conductivity type of the drift zone, the diode areas forming Schottky contacts with a load electrode between the first shielding areas and the second shielding areas.
    Type: Application
    Filed: July 14, 2021
    Publication date: November 4, 2021
    Inventors: Ralf Siemieniec, Thomas Aichinger, Thomas Basler, Wolfgang Bergner, Rudolf Elpelt, Romain Esteve, Michael Hell, Daniel Kueck, Caspar Leendertz, Dethard Peters, Hans-Joachim Schulze
  • Publication number: 20210273088
    Abstract: In an example, a semiconductor device includes an insulated gate transistor cell, a first region (e.g., a drain region and/or a drift region), a cathode region, a second region (e.g., an anode region and/or a separation region), and a source electrode. The insulated gate transistor cell includes a source region and a gate electrode. The source region and the cathode region are in a silicon carbide body. The gate electrode and the cathode region are electrically connected. The cathode region, the source region, and the first region have a first conductivity type. The second region has a second conductivity type and is between the cathode region and the first region. The source electrode and the source region are electrically connected. The source electrode and the second region are in contact with each other. A rectifying junction is electrically coupled between the source electrode and the cathode region.
    Type: Application
    Filed: February 26, 2021
    Publication date: September 2, 2021
    Inventors: Thomas BASLER, Hans-Guenter ECKEL, Jan FUHRMANN, Dethard PETERS, Florian STOERMER
  • Patent number: 11101343
    Abstract: A semiconductor component has a gate structure that extends from a first surface into an SiC semiconductor body. A body area in the SiC semiconductor body adjoins a first side wall of the gate structure. A first shielding area and a second shielding area of the conductivity type of the body area have at least twice as high a level of doping as the body area. A diode area forms a Schottky contact with a load electrode between the first shielding area and the second shielding area.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: August 24, 2021
    Assignee: Infineon Technologies AG
    Inventors: Ralf Siemieniec, Thomas Aichinger, Thomas Basler, Wolfgang Bergner, Rudolf Elpelt, Romain Esteve, Michael Hell, Daniel Kueck, Caspar Leendertz, Dethard Peters, Hans-Joachim Schulze
  • Publication number: 20210159172
    Abstract: A semiconductor device is provided. In an embodiment, the semiconductor device comprises a control region, a first power region, a second power region, an isolation region and/or a short circuit structure. The control region comprises a control terminal. The first power region comprises a first power terminal. The second power region comprises a second power terminal. The isolation region is between the control region and the first power region. The short circuit structure extends from the first power region, through the isolation region, to the control region. The short circuit structure is configured to form a low-resistive connection between the control region and the first power region during a failure state of the semiconductor device.
    Type: Application
    Filed: November 27, 2019
    Publication date: May 27, 2021
    Inventors: Thomas BASLER, Andreas HUERNER, Caspar LEENDERTZ, Dethard PETERS
  • Publication number: 20210159316
    Abstract: A semiconductor component includes a semiconductor component, including: a merged PiN Schottky (MPS) diode structure in a SiC semiconductor body having a drift zone of a first conductivity type; an injection region of a second conductivity type adjoining a first surface of the SiC semiconductor body; a contact structure at the first surface, the contact structure forming a Schottky contact with the drift zone and electrically contacting the injection region; and a zone of the first conductivity type formed between the injection region and a second surface of the SiC semiconductor body, the second surface being situated opposite the first surface. The zone is at a maximal distance of 1 ?m from the injection region of the second conductivity type.
    Type: Application
    Filed: February 1, 2021
    Publication date: May 27, 2021
    Inventors: Thomas Basler, Hans-Joachim Schulze, Ralf Siemieniec
  • Patent number: 10950690
    Abstract: A power electronic arrangement includes a semiconductor switch structure configured to assume a forward conducting state. A steady-state current carrying capability of the semiconductor switch structure in the forward conducting state is characterized by a nominal current. The semiconductor switch structure is configured to conduct, in the forward conducting state, at least a part of a forward current in a forward current mode of the power electronic arrangement. A diode structure electrically connected in antiparallel to the semiconductor switch structure is configured to conduct at least a part of a reverse current in a reverse mode of the power electronic arrangement. A thyristor structure electrically connected in antiparallel to the semiconductor switch structure has a forward breakover voltage lower than a diode on-state voltage of the diode structure at a critical diode current value, the critical diode current value amounting to at most five times the nominal current.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: March 16, 2021
    Assignee: Infineon Technologies AG
    Inventors: Frank Dieter Pfirsch, Thomas Basler
  • Patent number: 10950696
    Abstract: A semiconductor component includes a field effect transistor structure in a SiC semiconductor body having a gate structure at a first surface of the SiC semiconductor body and a drift zone of a first conductivity type. A zone of the first conductivity type is formed in a vertical direction between a semiconductor region of a second conductivity type and the drift zone. The zone is spaced apart from the gate structure and is at a maximal distance of 1 ?m from the semiconductor region in the vertical direction.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: March 16, 2021
    Assignee: Infineon Technologies AG
    Inventors: Thomas Basler, Hans-Joachim Schulze, Ralf Siemieniec
  • Publication number: 20210050421
    Abstract: A silicon carbide device includes a stripe-shaped trench gate structure extending from a first surface into a silicon carbide body. The gate structure has a gate length along a lateral first direction. A bottom surface and an active first gate sidewall of the gate structure are connected via a first bottom edge of the gate structure. The silicon carbide device further includes at least one source region of a first conductivity type. A shielding region of a second conductivity type is in contact with the first bottom edge of the gate structure across at least 20% of the gate length.
    Type: Application
    Filed: August 6, 2020
    Publication date: February 18, 2021
    Inventors: Caspar Leendertz, Thomas Basler, Paul Ellinghaus, Rudolf Elpelt, Michael Hell, Jens Peter Konrath, Shiqin Niu, Dethard Peters, Konrad Schraml, Bernd Leonhard Zippelius
  • Publication number: 20210043555
    Abstract: An electronic device and method is disclosed. In one example, the electronic device includes an electrically insulating material, a first load electrode arranged on a first surface of the electrically insulating material, and a second load electrode arranged on a second surface of the electrically insulating material opposite to the first surface, wherein the load electrodes are separated by the electrically insulating material along the entire length on which the load electrodes have opposite sections, wherein surfaces of the load electrodes facing away from the electrically insulating material are uncovered by the electrically insulating material.
    Type: Application
    Filed: July 31, 2020
    Publication date: February 11, 2021
    Applicant: Infineon Technologies AG
    Inventors: Edward Fuergut, Thomas Basler, Reinhold Bayerer, Ivan Nikitin
  • Publication number: 20210020541
    Abstract: An electronic component comprising an electrically conductive carrier, an electronic chip on the carrier, an encapsulant encapsulating part of the carrier and the electronic chip, and an electrically insulating and thermally conductive interface structure, in particular covering an exposed surface portion of the carrier and a connected surface portion of the encapsulant, wherein the interface structure has a compressibility in a range between 1% and 20%, in particular in a range between 5% and 15%.
    Type: Application
    Filed: October 4, 2020
    Publication date: January 21, 2021
    Inventors: Christian KASZTELAN, Edward FUERGUT, Manfred MENGEL, Fabio BRUCCHI, Thomas BASLER
  • Patent number: 10886909
    Abstract: An electric assembly includes an insulated gate bipolar transistor device, a wide-bandgap transistor device electrically connected in parallel with the bipolar transistor device and a control circuit. The control circuit is electrically coupled to a gate terminal of the bipolar transistor device and to a control terminal of the wide-bandgap transistor device. The control circuit is configured to turn on the bipolar transistor device and to turn on the wide-bandgap transistor device at a predefined turn-on delay with respect to a turn-on of the bipolar transistor device.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: January 5, 2021
    Assignee: Infineon Technologies AG
    Inventors: Roman Baburske, Johannes Georg Laven, Thomas Basler
  • Publication number: 20200395472
    Abstract: A chip includes a semiconductor body coupled to a first and a second load terminal. The semiconductor body includes an active region including a plurality of breakthrough cells, each of the breakthrough cells includes: an insulation structure; a drift region; an anode region, the anode region being electrically connected to the first load terminal and disposed in contact with the first load terminal; a first barrier region arranged in contact with each of the anode region and the insulation structure, where the first barrier region of the plurality of breakthrough cells forms a contiguous semiconductor layer; a second barrier region separating each of the anode region and at least a part of the first barrier region from the drift region; and a doped contact region arranged in contact with the second load terminal, where the drift region is positioned between the second barrier region and the doped contact region.
    Type: Application
    Filed: August 28, 2020
    Publication date: December 17, 2020
    Applicant: Infineon Technologies Austria AG
    Inventors: Markus BENINGER-BINA, Thomas BASLER, Matteo DAINESE, Hans-Joachim SCHULZE
  • Patent number: 10790384
    Abstract: A chip includes a semiconductor body coupled to a first and a second load terminal. The semiconductor body includes an active region including a plurality of breakthrough cells, each of the breakthrough cells includes: an insulation structure; a drift region; an anode region, the anode region being electrically connected to the first load terminal and disposed in contact with the first load terminal; a first barrier region arranged in contact with each of the anode region and the insulation structure, where the first barrier region of the plurality of breakthrough cells forms a contiguous semiconductor layer; a second barrier region separating each of the anode region and at least a part of the first barrier region from the drift region; and a doped contact region arranged in contact with the second load terminal, where the drift region is positioned between the second barrier region and the doped contact region.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: September 29, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Markus Beninger-Bina, Thomas Basler, Matteo Dainese, Hans-Joachim Schulze
  • Publication number: 20200286991
    Abstract: An embodiment of a semiconductor device includes a silicon carbide semiconductor body including source and body regions of opposite conductivity types. A trench structure extends from a first surface into the silicon carbide semiconductor body along a vertical direction, and includes a gate electrode and a gate dielectric. A contact is electrically connected to the source region at the first surface. The source region includes a first source sub-region directly adjoining the contact at a source contact area of the first surface, a second source sub-region, and a third source sub-region. The second sub-region is arranged between the first and third sub-regions along the vertical direction. A doping concentration profile along the vertical direction of the source region includes a doping concentration minimum in the second sub-region and a doping concentration maximum in the third sub-region. Each of the second and third sub-regions overlaps with the source contact area.
    Type: Application
    Filed: March 6, 2020
    Publication date: September 10, 2020
    Inventors: Thomas Basler, Caspar Leendertz, Hans-Joachim Schulze
  • Patent number: 10734250
    Abstract: A method of manufacturing a semiconductor power package includes: embedding a power semiconductor chip in an encapsulation, the encapsulation forming a housing of the semiconductor power package; and extending a layer of a covering material over at least a part of an outer main surface of the encapsulation. The covering material has a thermal conductivity greater than a thermal conductivity of the material of the encapsulation and/or a temperature stability greater than a temperature stability of the pre-molded chip housing.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: August 4, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Thomas Basler, Edward Fuergut, Christian Kasztelan, Ralf Otremba