Patents by Inventor Till Schloesser

Till Schloesser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170222043
    Abstract: A semiconductor device includes a source region and a drain region of a first conductivity type. The source region and the drain region are arranged in a first direction parallel to a first main surface of a semiconductor substrate. The semiconductor device further includes a layer stack having a drift layer of the first conductivity type and a compensation layer of a second conductivity type. The drain region is electrically connected with the drift layer. The semiconductor device also includes a connection region of the second conductivity type extending into the semiconductor substrate, the connection region being electrically connected with the compensation layer, wherein the buried semiconductor portion does not fully overlap with the drift layer.
    Type: Application
    Filed: January 26, 2017
    Publication date: August 3, 2017
    Inventors: Franz Hirler, Anton Mauder, Andreas Meiser, Till Schloesser
  • Publication number: 20170221885
    Abstract: An electric circuit includes a semiconductor device. The semiconductor device includes a first transistor and a second transistor in a common semiconductor substrate. The first transistor is of the same conductivity type as the second transistor. A first source region of the first transistor is electrically connected to a first source terminal via a first main surface of the semiconductor substrate. A second drain region of the second transistor is electrically connected to a second drain terminal via a first main surface of the semiconductor substrate. A first drain region of the first transistor and a second source region of the second transistor are electrically connected to an output terminal via a second main surface of the semiconductor substrate. The electric circuit further includes a control circuit operable to control a first gate electrode of the first transistor and a second gate electrode of the second transistor.
    Type: Application
    Filed: January 27, 2017
    Publication date: August 3, 2017
    Inventors: Rainald Sander, Till Schloesser
  • Publication number: 20170162660
    Abstract: A semiconductor device comprises a field effect transistor in a semiconductor substrate having a first main surface. The field effect transistor comprises a source region, a drain region, a body region, and a gate electrode at the body region. The gate electrode is configured to control a conductivity of a channel formed in the body region, and the gate electrode is disposed in gate trenches. The body region is disposed along a first direction between the source region and the drain region, the first direction being parallel to the first main surface. The body region has a shape of a ridge extending along the first direction, the body region being adjacent to the source region and the drain region. The semiconductor device further comprises a source contact and a body contact, the source contact being electrically connected to a source terminal, the body contact being electrically connected to the source contact and to the body region.
    Type: Application
    Filed: February 21, 2017
    Publication date: June 8, 2017
    Inventors: Andreas Meiser, Till Schloesser
  • Patent number: 9673320
    Abstract: A transistor cell includes a drift region, a source region, a body region, and a drain region that is laterally spaced apart from the source region. A gate electrode is adjacent the body region. A field electrode is arranged in the drift region. A source electrode is connected to the source region and the body region, and a drain electrode is connected to the drain region. An avalanche bypass structure is coupled between the source electrode and the drain electrode and includes a first semiconductor layer of the first doping type, a second semiconductor layer of the first doping type, and a pn-junction arranged between the first semiconductor layer and the source electrode. The second semiconductor layer has a higher doping concentration than the first semiconductor layer and is arranged between the second semiconductor layer and the drift region. The drain electrode is electrically connected to the second semiconductor layer.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: June 6, 2017
    Assignee: Infineon Technologies AG
    Inventors: Andreas Meiser, Till Schloesser
  • Patent number: 9661707
    Abstract: A semiconductor device includes first and second field effect transistors (FETs) formed in a semiconductor substrate having a first main surface. The first FET includes first source and drain contact grooves, each running in a first direction parallel to the first main surface, each formed in the first main surface. First source regions are electrically connected to a conductive material in the first source contact groove. First drain regions are electrically connected to a conductive material in the first drain contact groove. The second FET includes second source and drain contact grooves, each running in a second direction parallel to the first main surface, each formed in the first main surface. Second source regions are electrically connected to a conductive material in the second source contact groove, and second drain regions are electrically connected to a conductive material in the second drain contact groove.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: May 23, 2017
    Assignee: Infineon Technologies AG
    Inventors: Andreas Meiser, Till Schloesser
  • Patent number: 9660055
    Abstract: A method of manufacturing a semiconductor device includes providing dielectric stripe structures extending from a first surface into a semiconductor substrate between semiconductor fins. A first mask is provided that covers a first area including first stripe sections of the dielectric stripe structures and first fin sections of the semiconductor fins. The first mask exposes a second area including second stripe and second fin sections. A channel/body zone is formed in the second fin sections by introducing impurities, wherein the first mask is used as an implant mask. Using an etch mask that is based on the first mask, recess grooves are formed at least in the second stripe sections.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: May 23, 2017
    Assignee: Infineon Technologies Austria AG
    Inventors: Martin Poelzl, Till Schloesser, Andreas Meiser
  • Publication number: 20170141105
    Abstract: A semiconductor device includes a first transistor and a second transistor in a semiconductor substrate. The first transistor includes a first drain contact electrically connected to a first drain region, the first drain contact including a first drain contact portion and a second drain contact portion. The first drain contact portion includes a drain conductive material in direct contact with the first drain region. The second transistor includes a second source contact electrically connected to a second source region. The second source contact includes a first source contact portion and a second source contact portion. The first source contact portion includes a source conductive material in direct contact with the second source region.
    Type: Application
    Filed: November 15, 2016
    Publication date: May 18, 2017
    Applicant: Infineon Technologies AG
    Inventors: Andreas MEISER, Dirk AHLERS, Till SCHLOESSER
  • Patent number: 9620637
    Abstract: A semiconductor device formed in a semiconductor substrate includes a source region, a drain region, a gate electrode, and a body region disposed between the source region and the drain region. The gate electrode is disposed adjacent at least two sides of the body region, and the source region and the gate electrode are coupled to a source terminal. A width of the body region between the two sides of the body region is selected so that the body region is configured to be fully depleted.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: April 11, 2017
    Assignee: Infineon Technologies AG
    Inventors: Andreas Meiser, Till Schloesser, Franz Hirler
  • Patent number: 9614032
    Abstract: A semiconductor device comprises a transistor in a semiconductor body having a first main surface and a second main surface, the first main surface being opposite to the second main surface. The transistor comprises a source region at the first main surface, a drain region, a body region, a drift zone, and a gate electrode at the body region. The body region and the drift zone are disposed along a first direction between the source region and the drain region, the first direction being parallel to the first main surface. The gate electrode is disposed in trenches extending in the first direction. The transistor further comprises an insulating layer adjacent to the second main surface of the body region. The source region vertically extends to the second main surface.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: April 4, 2017
    Assignee: Infineon Technologies AG
    Inventors: Andreas Meiser, Till Schloesser
  • Patent number: 9614033
    Abstract: An embodiment of a semiconductor device comprises a first load terminal contact area at a first side of a semiconductor body. A second load terminal contact area is at a second side of the semiconductor body opposite to the first side. A control terminal contact area is at the second side of the semiconductor body. An isolation structure extends through the semiconductor body between the first and second sides. The isolation structure electrically isolates a first part of the semiconductor body from a second part of the semiconductor body. A first thickness of the first part of the semiconductor body is smaller than a second thickness of the second part of the semiconductor body.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: April 4, 2017
    Assignee: Infineon Technologies AG
    Inventors: Christoph Kadow, Till Schloesser
  • Patent number: 9608070
    Abstract: A semiconductor device comprises a field effect transistor in a semiconductor substrate having a first main surface. The field effect transistor comprises a source region, a drain region, a body region, and a gate electrode at the body region. The gate electrode is configured to control a conductivity of a channel formed in the body region, and the gate electrode is disposed in gate trenches. The body region is disposed along a first direction between the source region and the drain region, the first direction being parallel to the first main surface. The body region has a shape of a ridge extending along the first direction, the body region being adjacent to the source region and the drain region. The semiconductor device further comprises a source contact and a body contact, the source contact being electrically connected to a source terminal, the body contact being electrically connected to the source contact and to the body region.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: March 28, 2017
    Assignee: Infineon Technologies AG
    Inventors: Andreas Meiser, Till Schloesser
  • Publication number: 20170047443
    Abstract: A semiconductor device is provided including a transistor cell in a semiconductor substrate having a first main surface. The transistor cell includes a gate electrode in a gate trench in the first main surface adjacent to a body region. A longitudinal axis of the gate trench extends in a first direction parallel to the first main surface. A source region, a body region and a drain region are disposed along the first direction. A source contact comprises a first source contact portion and a second source contact portion. The second source contact portion is disposed at a second main surface of the semiconductor substrate. The first source contact portion includes a source conductive material in direct contact with the source region and a portion of the semiconductor substrate arranged between the source conductive material and the second source contact portion.
    Type: Application
    Filed: August 11, 2016
    Publication date: February 16, 2017
    Applicant: Infineon Technologies Dresden GmbH
    Inventors: Andreas MEISER, Karl-Heinz GEBHARDT, Till SCHLOESSER, Detlef WEBER
  • Patent number: 9564521
    Abstract: A semiconductor device comprises a first and second circuit element. The first circuit element comprises a first electrode structure including a first high-k dielectric layer, the first high-k dielectric layer having a first thickness and comprising hafnium. The second circuit element comprises a second electrode structure that includes a second high-k dielectric layer having a ferroelectric behavior, wherein the second high-k dielectric layer has a second thickness and comprises hafnium, and wherein the second thickness is greater than the first thickness.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: February 7, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Till Schloesser, Peter Baars
  • Patent number: 9530884
    Abstract: A method of manufacturing a semiconductor device including a transistor comprises forming field plate trenches in a main surface of a semiconductor substrate, a drift zone being defined between adjacent field plate trenches, forming a field dielectric layer in the field plate trenches, thereafter, forming gate trenches in the main surface of the semiconductor substrate, a channel region being defined between adjacent gate trenches, and forming a conductive material in at least some of the field plate trenches and in at least some of the gate trenches. The method further comprising forming a source region and forming a drain region in the main surface of the semiconductor substrate.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: December 27, 2016
    Assignee: Infineon Technologies AG
    Inventors: Andreas Meiser, Till Schloesser
  • Publication number: 20160365443
    Abstract: A transistor cell includes a drift region, a source region, a body region, and a drain region that is laterally spaced apart from the source region. A gate electrode is adjacent the body region. A field electrode is arranged in the drift region. A source electrode is connected to the source region and the body region, and a drain electrode is connected to the drain region. An avalanche bypass structure is coupled between the source electrode and the drain electrode and includes a first semiconductor layer of the first doping type, a second semiconductor layer of the first doping type, and a pn-junction arranged between the first semiconductor layer and the source electrode. The second semiconductor layer has a higher doping concentration than the first semiconductor layer and is arranged between the second semiconductor layer and the drift region. The drain electrode is electrically connected to the second semiconductor layer.
    Type: Application
    Filed: June 14, 2016
    Publication date: December 15, 2016
    Inventors: Andreas Meiser, Till Schloesser
  • Publication number: 20160322357
    Abstract: A semiconductor device includes first and second field effect transistors (FETs) formed in a semiconductor substrate having a first main surface. The first FET includes first source and drain contact grooves, each running in a first direction parallel to the first main surface, each formed in the first main surface. First source regions are electrically connected to a conductive material in the first source contact groove. First drain regions are electrically connected to a conductive material in the first drain contact groove. The second FET includes second source and drain contact grooves, each running in a second direction parallel to the first main surface, each formed in the first main surface. Second source regions are electrically connected to a conductive material in the second source contact groove, and second drain regions are electrically connected to a conductive material in the second drain contact groove.
    Type: Application
    Filed: April 26, 2016
    Publication date: November 3, 2016
    Inventors: Andreas Meiser, Till Schloesser
  • Publication number: 20160322464
    Abstract: A semiconductor device comprises a field effect transistor in a semiconductor substrate having a first main surface. The field effect transistor comprises a source region, a drain region, a body region, and a gate electrode at the body region. The gate electrode is configured to control a conductivity of a channel formed in the body region, and the gate electrode is disposed in gate trenches. The body region is disposed along a first direction between the source region and the drain region, the first direction being parallel to the first main surface. The body region has a shape of a ridge extending along the first direction, the body region being adjacent to the source region and the drain region. The semiconductor device further comprises a source contact and a body contact, the source contact being electrically connected to a source terminal, the body contact being electrically connected to the source contact and to the body region.
    Type: Application
    Filed: April 27, 2016
    Publication date: November 3, 2016
    Inventors: Andreas Meiser, Till Schloesser
  • Publication number: 20160322347
    Abstract: A switch comprises a field effect transistor in a semiconductor substrate having a first main surface. The field effect transistor comprises a source region, a drain region, a body region, and a gate electrode at the body region, the gate electrode being configured to control a conductivity of a channel formed in the body region. The gate electrode is disposed in gate trenches. The body region is disposed along a first direction between the source region and the drain region, the first direction being parallel to the first main surface. The body region has a shape of a ridge extending along the first direction. The body region is adjacent to the source region and the drain region. The switch further comprises a source contact and a body contact portion, the source contact being electrically connected to a source terminal. The body contact portion is in contact with the source contact and is electrically connected to the body region.
    Type: Application
    Filed: April 27, 2016
    Publication date: November 3, 2016
    Inventors: Andreas Meiser, Till Schloesser
  • Patent number: 9484457
    Abstract: A semiconductor device comprises a memory area including floating body transistors in the form of pillar structures, which are formed in a bulk architecture. The pillar structures may be appropriately addressed on the basis of a buried word line and a buried sense region or sense lines in combination with an appropriate bit line contact regime.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: November 1, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Peter Baars, Till Schloesser
  • Publication number: 20160307996
    Abstract: A semiconductor device comprises a transistor in a semiconductor body having a first main surface and a second main surface, the first main surface being opposite to the second main surface. The transistor comprises a source region at the first main surface, a drain region, a body region, a drift zone, and a gate electrode at the body region. The body region and the drift zone are disposed along a first direction between the source region and the drain region, the first direction being parallel to the first main surface. The gate electrode is disposed in trenches extending in the first direction. The transistor further comprises an insulating layer adjacent to the second main surface of the body region. The source region vertically extends to the second main surface.
    Type: Application
    Filed: March 25, 2016
    Publication date: October 20, 2016
    Inventors: Andreas Meiser, Till Schloesser