Patents by Inventor Timothy J. McArdle

Timothy J. McArdle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120181507
    Abstract: A semiconductor structure including an ordered array of parallel graphene nanoribbons located on a surface of a semiconductor substrate is provided using a deterministically assembled parallel set of nanowires as an etch mask. The deterministically assembled parallel set of nanowires is formed across a gap present in a patterned graphene layer utilizing an electric field assisted assembly process. A semiconductor device, such as a field effect transistor, can be formed on the ordered array of parallel graphene nanoribbons.
    Type: Application
    Filed: January 19, 2011
    Publication date: July 19, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Christos D. Dimitrakopoulos, Alfred Grill, Timothy J. McArdle
  • Publication number: 20120112198
    Abstract: remove impurities from an exposed surface in the ultrahigh vacuum environment. A high qualify single crystalline or polycrystalline silicon carbide film can be grown directly on the sapphire substrate by chemical vapor deposition employing a silicon-containing reactant and a carbon-containing reactant. Formation of single crystalline silicon carbide has been verified by x-ray diffraction, secondary ion mass spectroscopy, and transmission electron microscopy.
    Type: Application
    Filed: November 9, 2010
    Publication date: May 10, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jack O. Chu, Christos D. Dimitrakopoulos, Alfred Grill, Timothy J. McArdle, Katherine L. Saenger, Robert L. Wisnieff, Yu Zhu
  • Publication number: 20120112164
    Abstract: A single crystalline silicon carbide layer can be grown on a single crystalline sapphire substrate. Subsequently, a graphene layer can be formed by conversion of a surface layer of the single crystalline silicon layer during an anneal at an elevated temperature in an ultrahigh vacuum environment. Alternately, a graphene layer can be deposited on an exposed surface of the single crystalline silicon carbide layer. A graphene layer can also be formed directly on a surface of a sapphire substrate or directly on a surface of a silicon carbide substrate. Still alternately, a graphene layer can be formed on a silicon carbide layer on a semiconductor substrate. The commercial availability of sapphire substrates and semiconductor substrates with a diameter of six inches or more allows formation of a graphene layer on a commercially scalable substrate for low cost manufacturing of devices employing a graphene layer.
    Type: Application
    Filed: November 9, 2010
    Publication date: May 10, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jack O. Chu, Christos D. Dimitrakopoulos, Marcus O. Freitag, Alfred Grill, Timothy J. McArdle, Robert L. Wisnieff
  • Publication number: 20120028052
    Abstract: A graphene layer is formed on a crystallographic surface having a non-hexagonal symmetry. The crystallographic surface can be a surface of a single crystalline semiconductor carbide layer. The non-hexagonal symmetry surface of the single crystalline semiconductor carbide layer is annealed at an elevated temperature in ultra-high vacuum environment to form the graphene layer. During the anneal, the semiconductor atoms on the non-hexagonal surface of the single crystalline semiconductor carbide layer are evaporated selective to the carbon atoms. As the semiconductor atoms are selectively removed, the carbon concentration on the surface of the semiconductor-carbon alloy layer increases. Despite the non-hexagonal symmetry of the surface of the semiconductor-carbon alloy layer, the remaining carbon atoms can coalesce to form a graphene layer having hexagonal symmetry.
    Type: Application
    Filed: July 27, 2010
    Publication date: February 2, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jack O. Chu, Christos Dimitrakopoulos, Marcus O. Freitag, Alfred Grill, Timothy J. McArdle, Chun-Yung Sung, Robert L. Wisnieff