Patents by Inventor Timothy M. Hollis

Timothy M. Hollis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11670578
    Abstract: Apparatuses may include a device substrate including a microelectronic device and bond pads proximate to an active surface of the device substrate. A package substrate may be secured to the device substrate, the package substrate configured to route signals to and from the bond pads. A ball grid array may be supported on, and electrically connected to, the package substrate. Each ball positioned and configured to carry a high-bandwidth data signal or a high-frequency clock signal may be located laterally or longitudinally adjacent to no more than one other ball of the ball grid array configured to carry a high-bandwidth data signal or a high-frequency clock signal. Each ball positioned and configured to carry a high-bandwidth data signal may be located only diagonally adjacent to any other balls configured to carry a high-bandwidth data signal or a high-frequency clock signal.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: June 6, 2023
    Assignee: Micron Technology, Inc.
    Inventors: David K. Ovard, Thomas Hein, Timothy M. Hollis, Walter L. Moden
  • Publication number: 20230120654
    Abstract: Methods, systems, and devices for voltage adjustment based on, for example, pending refresh operations are described. A memory device may periodically perform refresh operations to refresh volatile memory cells and may at times postpone performing one or more refresh operations. A memory device may determine a quantity of pending (e.g., postponed) refresh operations, such as by determining a quantity of refresh intervals that have elapsed without receiving or executing a refresh command, among other methods. A memory device may pre-emptively adjust (or cause to be adjusted) a supply voltage associated with the memory device or memory device component based on the quantity of pending refresh operations to prepare for the current demand associated with the performing the one or more pending refresh operations. For example, the memory device may increase a supply voltage associated with one or more components to prepare for performing multiple pending refresh operations.
    Type: Application
    Filed: December 19, 2022
    Publication date: April 20, 2023
    Inventors: Timothy M. Hollis, James S. Rehmeyer, Baekkyu Choi, Yogesh Sharma, Eric J. Stave, Brian W. Huber, Miles S. Wiscombe
  • Publication number: 20230116891
    Abstract: A semiconductor device may implement a command-over-data function on a multi-level signaling data bus architectures. The multi-level signaling data bus architecture may support a multi-level communication architecture that includes a plurality of channels each including conversion of M bitstreams to N multi-level signals, where M is greater than N. A bitstream includes a plurality of bits provided serially, with each bit of the bitstream provided over a period of time. The multi-level signaling data bus is adapted to transmit data using a first set of assigned states of the data bus, and to transmit commands using at least a second assigned state of the data bus.
    Type: Application
    Filed: October 12, 2021
    Publication date: April 13, 2023
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Timothy M. Hollis
  • Patent number: 11626145
    Abstract: Embodiments of the disclosure include signal processing methods to reduce crosstalk between signal lines of a channel bus using feed forward equalizers (FFEs) configured smear pulse response energy transmitted on signal lines of the channel to reduce pulse edge rates. The coefficients for the FFE may be based on crosstalk interference characteristics. Smearing or spreading pulse response energy across a longer time period using a FFE increases inter-symbol interference (ISI). To counter increased inter-symbol interference caused by smearing pulse response energy, receivers configured to recover symbol data transmitted on the channel bus may each include respective decision-feedback equalizers (DFEs) that are configured to filter ISI from transmitted symbols based on previous symbol decisions of the channel. The combination of the FFE configured to smear pulse responses and the DFE to filter ISI may improve data eye quality for recovery of transmitted data on a channel bus when crosstalk dominates noise.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: April 11, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Matthew B. Leslie, Timothy M. Hollis, Roy E. Greeff
  • Publication number: 20230105886
    Abstract: Apparatuses and methods for coupling semiconductor devices are disclosed. Terminals (e.g., die pads) of a plurality of semiconductor devices may be coupled in a daisy chain manner through conductive structures that couple one or more terminals of a semiconductor device to two conductive bond pads. The conductive structures may be included in a redistribution layer (RDL) structure. The RDL structure may have a “U” shape in some embodiments of the disclosure. Each end of the “U” shape may be coupled to a respective one of the two conductive bond pads, and the terminal of the semiconductor device may be coupled to the RDL structure. The conductive bond pads of a semiconductor device may be coupled to conductive bond pads of other semiconductor devices by conductors (e.g., bond wires). As a result, the terminals of the semiconductor devices may be coupled in a daisy chain manner through the RDL structures, conductive bond pads, and conductors.
    Type: Application
    Filed: December 8, 2022
    Publication date: April 6, 2023
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Matthew B. Leslie, Timothy M. Hollis, Roy E. Greeff
  • Patent number: 11621038
    Abstract: Methods, systems, and devices related to an improved driver for non-binary signaling are described. A driver for a signal line may include a set of drivers of a first type and a set of drivers of a second type. When the driver drives the signal line using multiple drivers of the first type, at least one additional driver of the first type may compensate for non-linearities associated with one or more other drivers of the first type, which may have been calibrated at other voltages. The at least one additional driver of the first type may be calibrated for use at a particular voltage, to compensate for non-linearities associated with the one or more other drivers of the first type as exhibited at that particular voltage.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: April 4, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Shindeok Kang, Timothy M. Hollis, Dragos Dimitriu
  • Patent number: 11610613
    Abstract: Methods, systems, and devices for multiple concurrent modulation schemes in a memory system are described. Techniques are provided herein to communicate data using a modulation scheme having at least three levels and using a modulation scheme having at least two levels within a common system or memory device. Such communication with multiple modulation schemes may be concurrent. The modulated data may be communicated to a memory die through distinct signal paths that may correspond to a particular modulation scheme. An example of a modulation scheme having at least three levels may be pulse amplitude modulation (PAM) and an example of a modulation scheme having at least two levels may be non-return-to-zero (NRZ).
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: March 21, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Robert Nasry Hasbun, Timothy M. Hollis, Jeffrey P. Wright, Dean D. Gans
  • Publication number: 20230084286
    Abstract: Systems, apparatuses, and methods for operating a memory device or devices are described. A memory device or module may introduce latency in commands to coordinate operations at the device or to improve timing or power consumption at the device. For example, a host may issue a command to a memory module, and a component or feature of the memory module may receive the command and modify the command or the timing of its execution in manner that is invisible or non-disruptive to the host while facilitating operations at the memory module. In some examples, components or features of a memory module may be disabled to effect or introduce latency in operation without affecting timing or operation of a host device. A memory module may operate in different modes that allow for different latencies; the use or introduction of latencies may not affect other features or operability of the memory module.
    Type: Application
    Filed: November 21, 2022
    Publication date: March 16, 2023
    Inventors: Eric J. Stave, George E. Pax, Yogesh Sharma, Gregory A. King, Chan H. Yoo, Randon K. Richards, Timothy M. Hollis
  • Patent number: 11606229
    Abstract: Methods, systems, and devices for improving uniformity between levels of a multi-level signal are described. Techniques are provided herein to unify vertical alignment between data transmitted using multi-level signaling. Such multi-level signaling may be configured to capture transmitted data during a single clock cycle of a memory controller. An example of multi-level signaling scheme may be pulse amplitude modulation (PAM). Each unique symbol of the multi-level signal may be configured to represent a plurality of bits of data.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: March 14, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Timothy M. Hollis, Feng Lin
  • Publication number: 20230075962
    Abstract: This document describes apparatuses and techniques for termination of a pulse amplitude modulation signal of a memory circuit. In various aspects, a memory circuit is implemented with a termination circuit that includes a power rail, a resistor, and a switch to couple the resistor between the power rail and a signal line of a memory interconnect. The power rail may be configured to provide power at a termination voltage that is nominally half of a voltage of another power rail from which a corresponding transmission circuit operates. This may be effective to enable termination of pulse amplitude modulation signals to the termination voltage instead of a higher voltage that corresponds to the power rail of the transmission circuit or a ground-referenced node. By so doing, use of the termination circuit may reduce power consumption and/or improve signal integrity of the memory circuit.
    Type: Application
    Filed: August 23, 2022
    Publication date: March 9, 2023
    Applicant: Micron Technology, Inc.
    Inventors: Shindeok Kang, Timothy M. Hollis
  • Patent number: 11568913
    Abstract: Methods, systems, and devices for voltage adjustment based on, for example, pending refresh operations are described. A memory device may periodically perform refresh operations to refresh volatile memory cells and may at times postpone performing one or more refresh operations. A memory device may determine a quantity of pending (e.g., postponed) refresh operations, such as by determining a quantity of refresh intervals that have elapsed without receiving or executing a refresh command, among other methods. A memory device may pre-emptively adjust (or cause to be adjusted) a supply voltage associated with the memory device or memory device component based on the quantity of pending refresh operations to prepare for the current demand associated with the performing the one or more pending refresh operations. For example, the memory device may increase a supply voltage associated with one or more components to prepare for performing multiple pending refresh operations.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: January 31, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Timothy M. Hollis, James S. Rehmeyer, Baekkyu Choi, Yogesh Sharma, Eric J. Stave, Brian W. Huber, Miles S. Wiscombe
  • Publication number: 20230027926
    Abstract: Methods, systems, and devices related to an improved driver for non-binary signaling are described. A driver for a signal line may include a set of drivers of a first type and a set of drivers of a second type. When the driver drives the signal line using multiple drivers of the first type, at least one additional driver of the first type may compensate for non-linearities associated with one or more other drivers of the first type, which may have been calibrated at other voltages. The at least one additional driver of the first type may be calibrated for use at a particular voltage, to compensate for non-linearities associated with the one or more other drivers of the first type as exhibited at that particular voltage.
    Type: Application
    Filed: July 21, 2021
    Publication date: January 26, 2023
    Inventors: Shindeok Kang, Timothy M. Hollis, Dragos Dimitriu
  • Publication number: 20230014013
    Abstract: A memory subsystem architecture that includes clock signal routing architecture to split a clock signal to support two register clock driver (RCD) devices. The clock signal routing architecture may include clock signal splitter circuit that enables contemporaneous provision of a common clock signal to the two register clock driver devices. The clock signal splitter circuit may have three legs: a first leg to receive the clock signal from an external bus, and two similar legs to route the clock signal to the RCD devices.
    Type: Application
    Filed: September 28, 2022
    Publication date: January 19, 2023
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Matthew B. Leslie, Timothy M. Hollis, Roy E. Greeff
  • Publication number: 20230004492
    Abstract: Methods, systems, and devices that support variable modulation schemes for memory are described. A device may switch between different modulation schemes for communication based on one or more operating parameters associated with the device or a component of the device. The modulation schemes may involve amplitude modulation in which different levels of a signal represent different data values. For instance, the device may use a first modulation scheme that represents data using two levels and a second modulation scheme that represents data using four levels. In one example, the device may switch from the first modulation scheme to the second modulation scheme when bandwidth demand is high, and the device may switch from the second modulation scheme to the first modulation scheme when power conservation is in demand. The device may also, based on the operating parameter, change the frequency of the signal pulses communicated using the modulation schemes.
    Type: Application
    Filed: July 13, 2022
    Publication date: January 5, 2023
    Inventors: Robert Nasry Hasbun, Timothy M. Hollis, Jeffrey P. Wright, Dean D. Gans
  • Publication number: 20230006866
    Abstract: Methods, systems, and devices for techniques for time-variable decision feedback equalization are described. A memory device may be coupled with a host device using one or more conductive lines. A receiver may receive a signal transmitted from another device over a conductive line. The receiver may include a decision circuit used to determine voltages of the received signal based on the received signal and a feedback signal and output an output signal. The receiver may include a variable time-delay circuit configured to output delayed signals that are delayed versions of the output signal and a gain circuit that is configured to scale the delayed signals to generate the feedback signal. The variable time-delay circuit may include delay elements having variable delay parameters. The receiver may be coupled with a memory array that stores the information conveyed by the output signal.
    Type: Application
    Filed: July 27, 2022
    Publication date: January 5, 2023
    Inventor: Timothy M. Hollis
  • Publication number: 20230004507
    Abstract: Methods, systems, and devices for communicating data with stacked memory dies are described. A first semiconductor die may communicate with an external computing device using a binary-symbol signal including two signal levels representing one bit of data. Semiconductor dies may be stacked on one another and include internal interconnects (e.g., through-silicon vias) to relay an internal signal generated based on the binary-symbol signal. The internal signal may be a multi-symbol signal modulated using a modulation scheme that includes three or more levels to represent more than one bit of data. The multi-level symbol signal may simplify the internal interconnects. A second semiconductor die may be configured to receive and re-transmit the multi-level symbol signal to semiconductor dies positioned above the second semiconductor die.
    Type: Application
    Filed: July 13, 2022
    Publication date: January 5, 2023
    Inventors: Robert Nasry Hasbun, Timothy M. Hollis, Jeffrey P. Wright, Dean D. Gans
  • Publication number: 20220400038
    Abstract: Methods, systems, and devices for multiplexing distinct signals on a single pin of a memory device are described. Techniques are described herein to multiplex data using a modulation scheme having at least three levels. The modulated data may be communicated to multiple memory dies over a shared bus. Each of the dies may include a same or different type of memory cell and, in some examples, a multi-level signaling scheme may be pulse amplitude modulation (PAM). Each unique symbol of the modulated signal may be configured to represent a plurality of bits of data.
    Type: Application
    Filed: June 28, 2022
    Publication date: December 15, 2022
    Inventors: Robert Nasry Hasbun, Timothy M. Hollis, Jeffrey P. Wright, Dean D. Gans
  • Patent number: 11527508
    Abstract: Apparatuses and methods for coupling semiconductor devices are disclosed. Terminals (e.g., die pads) of a plurality of semiconductor devices may be coupled in a daisy chain manner through conductive structures that couple one or more terminals of a semiconductor device to two conductive bond pads. The conductive structures may be included in a redistribution layer (RDL) structure. The RDL structure may have a “U” shape in some embodiments of the disclosure. Each end of the “U” shape may be coupled to a respective one of the two conductive bond pads, and the terminal of the semiconductor device may be coupled to the RDL structure. The conductive bond pads of a semiconductor device may be coupled to conductive bond pads of other semiconductor devices by conductors (e.g., bond wires). As a result, the terminals of the semiconductor devices may be coupled in a daisy chain manner through the RDL structures, conductive bond pads, and conductors.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: December 13, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Matthew B. Leslie, Timothy M. Hollis, Roy E. Greeff
  • Publication number: 20220392518
    Abstract: Apparatuses, systems, and methods for high-pass filtering pre-emphasis circuits. A device may use a pre-emphasis driver to provide a multi-level signal based on multiple binary signals. The pre-emphasis driver includes a primary driver coupled in parallel with at least one equalizer path, each of which includes an equalizer driver and a filtering element. The filtering element may be an AC filtering element, such as a capacitor. The equalizer paths may contribute equalized signal(s) which have a high-pass filtering behavior. The pre-emphasis circuit may combine the primary signal from the primary driver and the equalized signals to generate an overall output multi-level signal. In some embodiments, the pre-emphasis driver may be a pulse amplitude modulated (PAM) driver, such as a PAM4 driver with four levels of the multi-level driver.
    Type: Application
    Filed: August 16, 2022
    Publication date: December 8, 2022
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: M. Ataul Karim, Timothy M. Hollis
  • Patent number: 11508422
    Abstract: Systems, apparatuses, and methods for operating a memory device or devices are described. A memory device or module may introduce latency in commands to coordinate operations at the device or to improve timing or power consumption at the device. For example, a host may issue a command to a memory module, and a component or feature of the memory module may receive the command and modify the command or the timing of its execution in manner that is invisible or non-disruptive to the host while facilitating operations at the memory module. In some examples, components or features of a memory module may be disabled to effect or introduce latency in operation without affecting timing or operation of a host device. A memory module may operate in different modes that allow for different latencies; the use or introduction of latencies may not affect other features or operability of the memory module.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: November 22, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Eric J. Stave, George E. Pax, Yogesh Sharma, Gregory A. King, Chan H. Yoo, Randon K. Richards, Timothy M. Hollis