Patents by Inventor Toru Tatsumi

Toru Tatsumi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8524617
    Abstract: A method for manufacturing a dielectric film having a high dielectric constant is provided. The method is a method for forming, on a substrate, a dielectric film including a metal oxide containing O and elements A and B, wherein the element A comprises Hf or a mixture of Hf and Zr and the element B comprises Al or Si, which includes the steps of: forming a metal oxide having an amorphous structure which has a molar ratio between element A and element B, B/(A+B) of 0.02?(B/(A+B))?0.095 and a molar ratio between element A and O, O/A of 1.0<(O/A)<2.0; and annealing the metal oxide having the amorphous structure at 700° C. or more to form a metal oxide containing a crystal phase with a cubic crystal content of 80% or more.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: September 3, 2013
    Assignee: Canon Anelva Corporation
    Inventors: Takashi Nakagawa, Naomu Kitano, Toru Tatsumi
  • Patent number: 8415753
    Abstract: This invention provides a semiconductor device having a field effect transistor comprising a gate electrode comprising a metal nitride layer and a polycrystalline silicon layer, and the gate electrode is excellent in thermal stability and realizes a desired work function. In the semiconductor device, a gate insulating film 6 on a silicon substrate 5 has a high-permittivity insulating film formed of a metal oxide, a metal silicate, a metal oxide introduced with nitrogen, or a metal silicate introduced with nitrogen, the gate electrode has a first metal nitride layer 7 provided on the gate insulating film 6 and containing Ti and N, a second metal nitride layer 8 containing Ti and N, and a polycrystalline silicon layer 9, in the first metal nitride layer 7, a molar ratio between Ti and N (N/Ti) is not less than 1.1, and a crystalline orientation X1 is 1.1<X1 <1.8, and in the second metal nitride layer 8, the molar ratio between Ti and N (N/Ti) is not less than 1.1, and a crystalline orientation X2 is 1.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: April 9, 2013
    Assignee: Canon Anelva Corporation
    Inventors: Takashi Nakagawa, Naomu Kitano, Kazuaki Matsuo, Motomu Kosuda, Toru Tatsumi
  • Patent number: 8288234
    Abstract: To provide a method of manufacturing a dielectric film having a high dielectric constant. In an embodiment of the present invention, an HfN/Hf laminated film is formed on a substrate on which a thin silicon oxide film is formed and a dielectric film of a metal nitride made of a mixture of Hf, Si, O and N is manufactured by annealing treatment. According to the present invention, it is possible to (1) reduce an EOT, (2) reduce a leak current to Jg=1.0×10?1 A/cm2 or less, (3) suppress hysteresis caused by the generation of fixed charges, and (4) prevent an increase in EOT even if heat treatment at 700° C. or more is performed and obtain excellent heat resistance.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: October 16, 2012
    Assignee: Canon Anelva Corporation
    Inventors: Takuya Seino, Takashi Nakagawa, Naomu Kitano, Toru Tatsumi
  • Patent number: 8269303
    Abstract: The lattice mismatching between a Ge layer and a Si layer is as large as about 4%. Thus, when the Ge layer is grown on the Si layer, penetration dislocation is introduced to cause leakage current at the p-i-n junction. Thereby, the photo-detection sensitivity is reduced, and the reliability of the element is also lowered. Further, in the connection with a Si waveguide, there are also problems of the reflection loss due to the difference in refractive index between Si and Ge, and of the absorption loss caused by a metal electrode.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: September 18, 2012
    Assignee: NEC Corporation
    Inventors: Junichi Fujikata, Toru Tatsumi, Akihito Tanabe, Jun Ushida, Daisuke Okamoto, Kenichi Nishi
  • Publication number: 20120199919
    Abstract: A gate electrode achieves a desired work function in a semiconductor device including a field-effect transistor equipped with a gate electrode composed of a metal nitride layer. The semiconductor device includes a silicon substrate and a field-effect transistor provided on the silicon substrate and having a gate insulating film and a gate electrode provided on the gate insulating film. The gate insulating film includes a high-permittivity insulating film formed of a metal oxide, a metal silicate, a metal oxide introduced with nitrogen, or a metal silicate introduced with nitrogen, and the gate electrode includes at least a metal nitride layer containing Ti and N. At least a part which is in contact with the gate insulating film of the metal nitride layer has a molar ratio between Ti and N (N/Ti ratio) of not less than 1.15 and a film density of not less than 4.7 g/cc.
    Type: Application
    Filed: July 29, 2010
    Publication date: August 9, 2012
    Applicant: CANON ANELVA CORPORATION
    Inventors: Takashi Nakagawa, Naomu Kitano, Kazuaki Matsuo, Motomu Kosuda, Toru Tatsumi
  • Patent number: 8203176
    Abstract: To make it possible to significantly suppress the leakage current in a semiconductor device having a capacitor structure using a dielectric film. There is provided a composite oxide dielectric which is mainly composed of Zr, Al and O, and which has a composition ratio of Zr and Al in a range of (1?x):x where 0.01?x?0.15, and has a crystal structure. When the dielectric is set to have the Al composition in the above described range and is crystallized, the relative dielectric constant of the dielectric can be significantly increased. When the dielectric is used as a dielectric film of a capacitor of a semiconductor device, the leakage current of the capacitor can be significantly reduced.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: June 19, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Takashi Nakagawa, Toru Tatsumi, Nobuyuki Ikarashi, Makiko Oshida
  • Patent number: 8178934
    Abstract: The present invention provides a method of manufacturing a dielectric film having a high permittivity. An embodiment of the present invention is a method of manufacturing, on a substrate, a dielectric film including a metallic oxynitride containing an element A made of Hf or a mixture of Hf and Zr, an element B made of Al, and N and O. The manufacturing method includes: a step of forming a metallic oxynitride whose mole fractions of the element A, the element B, and N expressed as B/(A+B+N) has a range of 0.015?(B/(A+B+N))?0.095 and N/(A+B+N) has a range of 0.045?(N/(A+B+N)) and a mole fraction O/A of the element A and O has a range expressed as 1.0<(O/A)<2.0, and having a noncrystalline structure; and a step of performing an annealing treatment at 700° C. or higher on the metallic oxynitride having a noncrystalline structure to form a metallic oxynitride including a crystalline phase with a cubical crystal incorporation percentage of 80% or higher.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: May 15, 2012
    Assignee: Canon Anelva Corporation
    Inventors: Naomu Kitano, Takashi Nakagawa, Toru Tatsumi
  • Publication number: 20120043617
    Abstract: This invention provides a semiconductor device having a field effect transistor comprising agate electrode comprising a metal nitride layer and a polycrystalline silicon layer, and the gate electrode is excellent in thermal stability and realizes a desired work function. In the semiconductor device, a gate insulating film 6 on a silicon substrate 5 has a high-permittivity insulating film formed of a metal oxide, a metal silicate, a metal oxide introduced with nitrogen, or a metal silicate introduced with nitrogen, the gate electrode has a first metal nitride layer 7 provided on the gate insulating film 6 and containing Ti and N, a second metal nitride layer 8 containing Ti and N, and a polycrystalline silicon layer 9, in the first metal nitride layer 7, a molar ratio between Ti and N (N/Ti) is not less than 1.1, and a crystalline orientation X1 is 1.1<X1<1.8, and in the second metal nitride layer 8, the molar ratio between Ti and N (N/Ti) is not less than 1.1, and a crystalline orientation X2 is 1.
    Type: Application
    Filed: April 28, 2010
    Publication date: February 23, 2012
    Applicant: CANON ANELVA CORPORATION
    Inventors: Takashi Nakagawa, Naomu Kitano, Kazuaki Matsuo, Motomu Kosuda, Toru Tatsumi
  • Publication number: 20120021612
    Abstract: A method for manufacturing a dielectric film having a high dielectric constant is provided. The method is a method for forming, on a substrate, a dielectric film including a metal oxide containing O and elements A and B, wherein the element A comprises Hf or a mixture of Hf and Zr and the element B comprises Al or Si, which includes the steps of: forming a metal oxide having an amorphous structure which has a molar ratio between element A and element B, B/(A+B) of 0.02?(B/(A+B))?0.095 and a molar ratio between element A and O, O/A of 1.0<(O/A)<2.0; and annealing the metal oxide having the amorphous structure at 700° C. or more to form a metal oxide containing a crystal phase with a cubic crystal content of 80% or more.
    Type: Application
    Filed: February 26, 2010
    Publication date: January 26, 2012
    Applicant: C/O CANON ANELVA CORPORATION
    Inventors: Takashi Nakagawa, Naomu Kitano, Toru Tatsumi
  • Patent number: 8053311
    Abstract: The present invention provides a dielectric film having a high permittivity and a high heat resistance. An embodiment of the present invention is a dielectric film (103) including a composite oxynitride containing an element A made of Hf, an element B made of Al or Si, and N and O, wherein mole fractions of the element A, the element B, and N expressed as B/(A+B+N) range from 0.015 to 0.095 and N/(A+B+N) equals or exceeds 0.045, and has a crystalline structure.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: November 8, 2011
    Assignee: Canon Anelva Corporation
    Inventors: Takashi Nakagawa, Naomu Kitano, Toru Tatsumi
  • Patent number: 8030694
    Abstract: The present invention provides a dielectric film having a high permittivity and a high heat resistance. An embodiment of the present invention is a dielectric film (103) including a composite oxynitride containing an element A made of Hf, an element B made of Al or Si, and N and O, wherein mole fractions of the element A, the element B, and N expressed as B/(A+B+N) range from 0.015 to 0.095 and N/(A+B+N) equals or exceeds 0.045, and has a crystalline structure.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: October 4, 2011
    Assignee: Canon Anelva Corporation
    Inventors: Takashi Nakagawa, Naomu Kitano, Toru Tatsumi
  • Patent number: 7968463
    Abstract: A formation method of a metallic compound layer includes preparing, in a chamber, a substrate having a surface on which a semiconductor material of silicon, germanium, or silicon germanium is exposed, and forming a metallic compound layer, includes: supplying a raw material gas containing a metal for forming a metallic compound with the semiconductor material to the chamber; heating the substrate to a temperature at which the raw material gas is pyrolyzed; and forming a metallic compound layer by reaction of the metal with the semiconductor material so that no layer of the metal is deposited on the substrate. A manufacturing method of a semiconductor device employs this formation method of a metallic compound layer.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: June 28, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Takashi Nakagawa, Toru Tatsumi, Makiko Oshida, Nobuyuki Ikarashi, Kensuke Takahashi, Kenzo Manabe
  • Publication number: 20110064642
    Abstract: The present invention provides a method of manufacturing a dielectric film having a high permittivity. An embodiment of the present invention is a method of manufacturing, on a substrate, a dielectric film including a metallic oxynitride containing an element A made of Hf or a mixture of Hf and Zr, an element B made of Al, and N and O. The manufacturing method includes: a step of forming a metallic oxynitride whose mole fractions of the element A, the element B, and N expressed as B/(A+B+N) has a range of 0.015?(B/(A+B+N))?0.095 and N/(A+B+N) has a range of 0.045?(N/(A+B+N)) and a mole fraction O/A of the element A and O has a range expressed as 1.0<(O/A)<2.0, and having a noncrystalline structure; and a step of performing an annealing treatment at 700° C. or higher on the metallic oxynitride having a noncrystalline structure to form a metallic oxynitride including a crystalline phase with a cubical crystal incorporation percentage of 80% or higher.
    Type: Application
    Filed: November 23, 2010
    Publication date: March 17, 2011
    Applicant: CANON ANELVA CORPORATION
    Inventors: Naomu Kitano, Takashi Nakagawa, Toru Tatsumi
  • Publication number: 20110027979
    Abstract: To provide a method of manufacturing a dielectric film having a high dielectric constant. In an embodiment of the present invention, an HfN/Hf laminated film is formed on a substrate on which a thin silicon oxide film is formed and a dielectric film of a metal nitride made of a mixture of Hf, Si, O and N is manufactured by annealing treatment. According to the present invention, it is possible to (1) reduce an EOT, (2) reduce a leak current to Jg=1.0×10?1 A/cm2 or less, (3) suppress hysteresis caused by the generation of fixed charges, and (4) prevent an increase in EOT even if heat treatment at 700° C. or more is performed and obtain excellent heat resistance.
    Type: Application
    Filed: July 21, 2010
    Publication date: February 3, 2011
    Applicant: CANON ANELVA CORPORATION
    Inventors: Takuya Seino, Takashi Nakagawa, Naomu Kitano, Toru Tatsumi
  • Publication number: 20110012221
    Abstract: The lattice mismatching between a Ge layer and a Si layer is as large as about 4%. Thus, when the Ge layer is grown on the Si layer, penetration dislocation is introduced to cause leakage current at the p-i-n junction. Thereby, the photo-detection sensitivity is reduced, and the reliability of the element is also lowered. Further, in the connection with a Si waveguide, there are also problems of the reflection loss due to the difference in refractive index between Si and Ge, and of the absorption loss caused by a metal electrode.
    Type: Application
    Filed: March 9, 2009
    Publication date: January 20, 2011
    Inventors: Junichi Fujikata, Toru Tatsumi, Akihito Tanabe, Jun Ushida, Daisuke Okamoto, Kenichi Nishi
  • Patent number: 7867847
    Abstract: The present invention provides a method of manufacturing a dielectric film having a high permittivity. An embodiment of the present invention is a method of manufacturing, on a substrate, a dielectric film including a metallic oxynitride containing an element A made of Hf or a mixture of Hf and Zr, an element B made of Al, and N and O. The manufacturing method includes: a step of forming a metallic oxynitride whose mole fractions of the element A, the element B, and N expressed as B/(A+B+N) has a range of 0.015?(B/A+B+N))?0.095 and N/(A+B+N) has a range of 0.045?(N/(A+B+N)) and a mole fraction O/A of the element A and O has a range expressed as 1.0<(O/A)<2.0, and having a noncrystalline structure; and a step of performing an annealing treatment at 700° C. or higher on the metallic oxynitride having a noncrystalline structure to form a metallic oxynitride including a crystalline phase with a cubical crystal incorporation percentage of 80% or higher.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: January 11, 2011
    Assignee: Canon Anelva Corporation
    Inventors: Naomu Kitano, Takashi Nakagawa, Toru Tatsumi
  • Publication number: 20100330813
    Abstract: The present invention provides a dielectric film having a high permittivity and a high heat resistance. An embodiment of the present invention is a dielectric film (103) including a composite oxynitride containing an element A made of Hf, an element B made of Al or Si, and N and O, wherein mole fractions of the element A, the element B, and N expressed as B/(A+B+N) range from 0.015 to 0.095 and N/(A+B+N) equals or exceeds 0.045, and has a crystalline structure.
    Type: Application
    Filed: September 10, 2010
    Publication date: December 30, 2010
    Applicant: CANON ANELVA CORPORATION
    Inventors: Takashi Nakagawa, Naomu Kitano, Toru Tatsumi
  • Publication number: 20100320520
    Abstract: To make it possible to significantly suppress the leakage current in a semiconductor device having a capacitor structure using a dielectric film. There is provided a composite oxide dielectric which is mainly composed of Zr, Al and O, and which has a composition ratio of Zr and Al in a range of (1?x):x where 0.01?x?0.15, and has a crystal structure. When the dielectric is set to have the Al composition in the above described range and is crystallized, the relative dielectric constant of the dielectric can be significantly increased. When the dielectric is used as a dielectric film of a capacitor of a semiconductor device, the leakage current of the capacitor can be significantly reduced.
    Type: Application
    Filed: February 4, 2008
    Publication date: December 23, 2010
    Inventors: Takashi Nakagawa, Toru Tatsumi, Nobuyuki Ikarashi, Makiko Oshida
  • Publication number: 20100244192
    Abstract: The present invention provides a dielectric film having a high permittivity and a high heat resistance. An embodiment of the present invention is a dielectric film (103) including a composite oxynitride containing an element A made of Hf, an element B made of Al or Si, and N and O, wherein mole fractions of the element A, the element B, and N expressed as B/(A+B+N) range from 0.015 to 0.095 and N/(A+B+N) equals or exceeds 0.045, and has a crystalline structure.
    Type: Application
    Filed: April 14, 2010
    Publication date: September 30, 2010
    Applicant: CANON ANELVA CORPORATION
    Inventors: Takashi Nakagawa, Naomu Kitano, Toru Tatsumi
  • Publication number: 20100221885
    Abstract: The present invention provides a method of manufacturing a dielectric film having a high permittivity. An embodiment of the present invention is a method of manufacturing, on a substrate, a dielectric film including a metallic oxynitride containing an element A made of Hf or a mixture of Hf and Zr, an element B made of Al, and N and O. The manufacturing method includes: a step of forming a metallic oxynitride whose mole fractions of the element A, the element B, and N expressed as B/(A+B+N) has a range of 0.015?(B/A+B+N))?0.095 and N/(A+B+N) has a range of 0.045?(N/(A+B+N)) and a mole fraction O/A of the element A and O has a range expressed as 1.0<(O/A)<2.0, and having a noncrystalline structure; and a step of performing an annealing treatment at 700° C. or higher on the metallic oxynitride having a noncrystalline structure to form a metallic oxynitride including a crystalline phase with a cubical crystal incorporation percentage of 80% or higher.
    Type: Application
    Filed: April 16, 2010
    Publication date: September 2, 2010
    Applicant: CANON ANELVA CORPORATION
    Inventors: Naomu Kitano, Takashi Nakagawa, Toru Tatsumi