Patents by Inventor Toshihiko Nagase

Toshihiko Nagase has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8009465
    Abstract: A magnetoresistive element includes a first ferromagnetic layer having a first magnetization, the first magnetization having a first pattern when the magnetoresistive element is half-selected during a first data write, a second pattern when the magnetoresistive element is selected during a second data write, and a third pattern of residual magnetization, the first pattern being different from the second and third pattern, a second ferromagnetic layer having a second magnetization, and a nonmagnetic layer arranged between the first ferromagnetic layer and the second ferromagnetic layer and having a tunnel conductance changing dependent on a relative angle between the first magnetization and the second magnetization.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: August 30, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masahiko Nakayama, Tadashi Kai, Tatsuya Kishi, Yoshiaki Fukuzumi, Toshihiko Nagase, Sumio Ikegawa, Hiroaki Yoda
  • Patent number: 7957184
    Abstract: The present invention provides a low-resistance magnetoresistive element of a spin-injection write type. A crystallization promoting layer that promotes crystallization is formed in contact with an interfacial magnetic layer having an amorphous structure, so that crystallization is promoted from the side of a tunnel barrier layer, and the interface between the tunnel barrier layer and the interfacial magnetic layer is adjusted. With this arrangement, it is possible to form a magnetoresistive element that has a low resistance so as to obtain a desired current value, and has a high TMR ratio.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: June 7, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masatoshi Yoshikawa, Eiji Kitagawa, Tadaomi Daibou, Toshihiko Nagase, Tatsuya Kishi, Hiroaki Yoda
  • Publication number: 20110116305
    Abstract: A magnetoresistive element includes a first magnetic layer which includes a first surface and a second surface and has a first standard electrode potential, a second magnetic layer, a barrier layer which is provided between the second magnetic layer and the first surface of the first magnetic layer, and a nonmagnetic cap layer which contacts the second surface of the first magnetic layer and is formed from an alloy of a first metal material and a second metal material, the first metal material having a second standard electrode potential lower than the first standard electrode potential, the second metal material having a third standard electrode potential higher than the first standard electrode potential.
    Type: Application
    Filed: January 25, 2011
    Publication date: May 19, 2011
    Inventors: Makoto NAGAMINE, Toshihiko Nagase, Sumio Ikegawa, Katsuya Nishiyama, Masatoshi Yoshikawa
  • Patent number: 7932513
    Abstract: A magnetic random access memory includes a bit line running in a first direction, a first word line running in a second direction different from the first direction, and a memory element having a magnetoresistive effect element including a fixed layer having a fixed magnetization direction, a recording layer having a reversible magnetization direction, and a nonmagnetic layer formed between the fixed layer and the recording layer, the magnetization directions in the fixed layer and the recording layer being perpendicular to a film surface, and a heater layer in contact with the magnetoresistive effect element, the memory element being connected to the bit line, and formed to oppose a side surface of the first word line such that the memory element is insulated from the first word line.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: April 26, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Keiji Hosotani, Yoshiaki Asao, Toshihiko Nagase
  • Patent number: 7924607
    Abstract: A magnetoresistive effect element includes a first magnetic layer, a second magnetic layer, and a first spacer layer. The first magnetic layer has an invariable magnetization direction. The second magnetic layer has a variable magnetization direction, and contains at least one element selected from Fe, Co, and Ni, at least one element selected from Ru, Rh, Pd, Ag, Re, Os, Ir, Pt, and Au, and at least one element selected from V, Cr, and Mn. The spacer layer is formed between the first magnetic layer and the second magnetic layer, and made of a nonmagnetic material. A bidirectional electric current flowing through the first magnetic layer, the spacer layer, and the second magnetic layer makes the magnetization direction of the second magnetic layer variable.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: April 12, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masatoshi Yoshikawa, Eiji Kitagawa, Tadashi Kai, Toshihiko Nagase, Tatsuya Kishi, Hiroaki Yoda
  • Patent number: 7920361
    Abstract: It is made possible to provide a magnetoresistive effect element that can reverse magnetization direction with a low current, having low areal resistance (RA) and a high TMR ratio. A magnetoresistive effect element includes: a film stack that includes a magnetization free layer including a magnetic layer in which magnetization direction is changeable, a magnetization pinned layer including a magnetic layer in which magnetization direction is pinned, and an intermediate layer provided between the magnetization free layer and the magnetization pinned layer, the intermediate layer being an oxide containing boron (B) and an element selected from the group consisting of Ca, Mg, Sr, Ba, Ti, and Sc. Current is applied bidirectionally between the magnetization pinned layer and the magnetization free layer through the intermediate layer, so that the magnetization of the magnetization free layer is reversible.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: April 5, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masatoshi Yoshikawa, Tadashi Kai, Toshihiko Nagase, Eiji Kitagawa, Tatsuya Kishi, Hiroaki Yoda
  • Publication number: 20110073970
    Abstract: According to one embodiment, a magnetoresistive element includes a first magnetic layer with a variable magnetization and an easy-axis in a perpendicular direction to a film surface, a second magnetic layer with an invariable magnetization and an easy-axis in the perpendicular direction, and a first nonmagnetic layer between the first and second magnetic layers. The first magnetic layer comprises a ferromagnetic material including an alloy in which Co and Pd, or Co and Pt are alternately laminated on an atomically close-packed plane thereof. The first magnetic layer has C-axis directing the perpendicular direction. And a magnetization direction of the first magnetic layer is changed by a current flowing through the first magnetic layer, the first nonmagnetic layer and the second magnetic layer.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 31, 2011
    Inventors: Tadashi Kai, Katsuya Nishiyama, Toshihiko Nagase, Masatoshi Yoshikawa, Eiji Kitagawa, Tadaomi Daibou, Makoto Nagamine, Masahiko Nakayama, Naoharu Shimomura, Hiroaki Yoda, Kei Yakushiji, Shinji Yuasa, Hitoshi Kubota, Taro Nagahama, Akio Fukushima, Koji Ando
  • Patent number: 7898846
    Abstract: A magnetoresistive element includes a first magnetic layer which includes a first surface and a second surface and has a first standard electrode potential, a second magnetic layer, a barrier layer which is provided between the second magnetic layer and the first surface of the first magnetic layer, and a nonmagnetic cap layer which contacts the second surface of the first magnetic layer and is formed from an alloy of a first metal material and a second metal material, the first metal material having a second standard electrode potential lower than the first standard electrode potential, the second metal material having a third standard electrode potential higher than the first standard electrode potential.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: March 1, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Makoto Nagamine, Toshihiko Nagase, Sumio Ikegawa, Katsuya Nishiyama, Masatoshi Yoshikawa
  • Patent number: 7858650
    Abstract: A medicinal composition for inhalation containing a continuous-release type prodrug of an EP2 agonist topically exhibits a prolonged bronchodilating and antiinflammatory effects. Namely, the medicinal composition for inhalation containing a continuous-release type prodrug of an EP2 agonist is useful as a safe preventive and/or a remedy for respiratory diseases (for example, asthma, pulmonary injury, pulmonary fibrosis, pulmonary emphysema, bronchitis, chronic obstructive pulmonary disease, adult respiratory distress syndrome, cystic fibrosis, pulmonary hypertension or the like) without causing any systemic effect such as lowering blood pressure. Thus, a safe and useful remedy for respiratory diseases is provided.
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: December 28, 2010
    Assignee: Ono Pharmaceutical Co., Ltd.
    Inventors: Shigeki Yamamoto, Tsutomu Shiroya, Michiaki Kadode, Toru Maruyama, Kousuke Tani, Toshihiko Nagase
  • Patent number: 7848059
    Abstract: A magnetoresistive effect element includes a magnetization fixed layer having substantially fixed magnetization direction. A magnetization variable layer has a variable magnetization direction, consists of a magnetic alloy that has a BCC structure and is expressed by Fe1-x-yCoxNiy (0?x+y?1, 0?x?1, 0?y?1), and contains at least one additive element of V, Cr, and Mn in a range of 0<a?20 at % (a is a content). An intermediate layer is disposed between the magnetization fixed layer and the magnetization variable layer and consists of a nonmagnetic material. The magnetization direction of the magnetization variable layer is switched by a bidirectional current passing through the magnetization fixed layer, the intermediate layer, and the magnetization variable layer.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: December 7, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masatoshi Yoshikawa, Tadashi Kai, Toshihiko Nagase, Eiji Kitagawa, Tatsuya Kishi, Hiroaki Yoda
  • Publication number: 20100244163
    Abstract: A magnetoresistive element includes a stabilization layer, a nonmagnetic layer, a spin-polarization layer provided between the stabilization layer and the nonmagnetic layer, the spin-polarization layer having magnetic anisotropy in a perpendicular direction, and a magnetic layer provided on a side of the nonmagnetic layer opposite to a side on which the spin-polarization layer is provided. The stabilization layer has a lattice constant smaller than that of the spin-polarization layer in an in-plane direction. The spin-polarization layer contains at least one element selected from a group consisting of cobalt (Co) and iron (Fe), has a body-centered tetragonal (BCT) structure, and has a lattice constant ratio c/a of 1.10 (inclusive) to 1.35 (inclusive) when a perpendicular direction is a c-axis and an in-plane direction is an a-axis.
    Type: Application
    Filed: March 3, 2010
    Publication date: September 30, 2010
    Inventors: Tadaomi Daibou, Toshihiko Nagase, Eiji Kitagawa, Masatoshi Yoshikawa, Katsuya Nishiyama, Makoto Nagamine, Tatsuya Kishi, Hiroaki Yoda
  • Publication number: 20100230770
    Abstract: The present invention provides a low-resistance magnetoresistive element of a spin-injection write type. A crystallization promoting layer that promotes crystallization is formed in contact with an interfacial magnetic layer having an amorphous structure, so that crystallization is promoted from the side of a tunnel barrier layer, and the interface between the tunnel barrier layer and the interfacial magnetic layer is adjusted. With this arrangement, it is possible to form a magnetoresistive element that has a low resistance so as to obtain a desired current value, and has a high TMR ratio.
    Type: Application
    Filed: May 28, 2010
    Publication date: September 16, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masatoshi Yoshikawa, Eiji Kitagawa, Tadaomi Daibou, Toshihiko Nagase, Tatsuya Kishi, Hiroaki Yoda
  • Patent number: 7768824
    Abstract: The present invention provides a low-resistance magnetoresistive element of a spin-injection write type. A crystallization promoting layer that promotes crystallization is formed in contact with an interfacial magnetic layer having an amorphous structure, so that crystallization is promoted from the side of a tunnel barrier layer, and the interface between the tunnel barrier layer and the interfacial magnetic layer is adjusted. With this arrangement, it is possible to form a magnetoresistive element that has a low resistance so as to obtain a desired current value, and has a high TMR ratio.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: August 3, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masatoshi Yoshikawa, Eiji Kitagawa, Tadaomi Daibou, Toshihiko Nagase, Tatsuya Kishi, Hiroaki Yoda
  • Publication number: 20100118600
    Abstract: A magnetoresistive element which records information by supplying spin-polarized electrons to a magnetic material, includes a first pinned layer which is made of a magnetic material and has a first magnetization directed in a direction perpendicular to a film surface, a free layer which is made of a magnetic material and has a second magnetization directed in the direction perpendicular to the film surface, the direction of the second magnetization reversing by the spin-polarized electrons, and a first nonmagnetic layer which is provided between the first pinned layer and the free layer. A saturation magnetization Ms of the free layer satisfies a relationship 0?Ms<?{square root over ( )}{Jw/(6?At)}. Jw is a write current density, t is a thickness of the free layer, A is a constant.
    Type: Application
    Filed: January 12, 2010
    Publication date: May 13, 2010
    Inventors: Toshihiko NAGASE, Masatoshi Yoshikawa, Eiji Kitagawa, Masahiko Nakayama, Tadashi Kai, Tatsuya Kishi, Hiroaki Yoda
  • Patent number: 7663197
    Abstract: A magnetoresistive element which records information by supplying spin-polarized electrons to a magnetic material, includes a first pinned layer which is made of a magnetic material and has a first magnetization directed in a direction perpendicular to a film surface, a free layer which is made of a magnetic material and has a second magnetization directed in the direction perpendicular to the film surface, the direction of the second magnetization reversing by the spin-polarized electrons, and a first nonmagnetic layer which is provided between the first pinned layer and the free layer. A saturation magnetization Ms of the free layer satisfies a relationship 0?Ms<?{square root over ( )}{Jw/(6?At)}. Jw is a write current density, t is a thickness of the free layer, A is a constant.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: February 16, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshihiko Nagase, Masatoshi Yoshikawa, Eiji Kitagawa, Masahiko Nakayama, Tadashi Kai, Tatsuya Kishi, Hiroaki Yoda
  • Publication number: 20090243008
    Abstract: A magnetoresistive element includes an underlying layer having a cubic or tetragonal crystal structure oriented in a (001) plane, a first magnetic layer provided on the underlying layer, having perpendicular magnetic anisotropy, and having an fct structure oriented in a (001) plane, a non-magnetic layer provided on the first magnetic layer, and a second magnetic layer provided on the non-magnetic layer, and having perpendicular magnetic anisotropy. An in-plane lattice constant a1 of the underlying layer and an in-plane lattice constant a2 of the first magnetic layer satisfy the following equation in which b is a magnitude of Burgers vector of the first magnetic layer, ? is an elastic modulus of the first magnetic layer, and hc is a thickness of the first magnetic layer.
    Type: Application
    Filed: March 24, 2009
    Publication date: October 1, 2009
    Inventors: Eiji Kitagawa, Masatoshi Yoshikawa, Toshihiko Nagase, Tadaomi Daibou, Makoto Nagamine, Katsuya Nishiyama, Tatsuya Kishi, Hiroaki Yoda
  • Patent number: 7596015
    Abstract: A magnetoresistive element includes a free layer which contains a magnetic material and has an fct crystal structure with a (001) plane oriented, the free layer having a magnetization which is perpendicular to a film plane and has a direction to be changeable by spin-polarized electrons, a first nonmagnetic layer and a second nonmagnetic layer which sandwich the free layer and have one of a tetragonal crystal structure and a cubic crystal structure, and a fixed layer which is provided on only one side of the free layer and on a surface of the first nonmagnetic layer opposite to a surface with the free layer and contains a magnetic material, the fixed layer having a magnetization which is perpendicular to a film plane and has a fixed direction.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: September 29, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Eiji Kitagawa, Toshihiko Nagase, Masatoshi Yoshikawa, Katsuya Nishiyama, Tatsuya Kishi, Hiroaki Yoda
  • Publication number: 20090224342
    Abstract: A magnetoresistive effect element includes a reference layer, a recording layer, and a nonmagnetic layer. The reference layer is made of a magnetic material, has an invariable magnetization which is perpendicular to a film surface. The recording layer is made of a magnetic material, has a variable magnetization which is perpendicular to the film surface. The nonmagnetic layer is arranged between the reference layer and the recording layer. A critical diameter which is determined by magnetic anisotropy, saturation magnetization, and switched connection of the recording layer and has a single-domain state as a unique stable state or a critical diameter which has a single-domain state as a unique stable state and is inverted while keeping the single-domain state in an inverting process is larger than an element diameter of the magnetoresistive effect element.
    Type: Application
    Filed: October 9, 2008
    Publication date: September 10, 2009
    Inventors: Masahiko NAKAYAMA, Kay Yakushiji, Sumio Ikegawa, Shinji Yuasa, Tadashi Kai, Toshihiko Nagase, Minoru Amano, Hisanori Aikawa, Tatsuya Kishi, Hiroaki Yoda
  • Publication number: 20090225587
    Abstract: A magnetoresistive element includes a first magnetic layer which includes a first surface and a second surface and has a first standard electrode potential, a second magnetic layer, a barrier layer which is provided between the second magnetic layer and the first surface of the first magnetic layer, and a nonmagnetic cap layer which contacts the second surface of the first magnetic layer and is formed from an alloy of a first metal material and a second metal material, the first metal material having a second standard electrode potential lower than the first standard electrode potential, the second metal material having a third standard electrode potential higher than the first standard electrode potential.
    Type: Application
    Filed: May 22, 2009
    Publication date: September 10, 2009
    Inventors: Makoto Nagamine, Toshihiko Nagase, Sumio Ikegawa, Katsuya Nishiyama, Masatoshi Yoshikawa
  • Patent number: 7576129
    Abstract: The present invention relates to a carboxylic acid compound of formula (I): wherein R1 is H, alkyl; m is 2, 3; n is 0-2; R2 is phenyl, naphthyl, benzofuran, benzothiophene; Q is —CH2—O-Cyc1, —CH2-Cyc2, -L-Cyc3; R3a and R3b each independently is hydrogen, alkyl or taken together form tetrahydro-2H-pyran; a pharmaceutically acceptable salt thereof, a method for producing a process of the preparation thereof and a pharmaceutical agent comprising the same as an active ingredient. The compound of formula (I) have an antagonizing activity against PGE2 receptor, specifically EP3 receptor which is subtype thereof, and are useful for the prevention and/or treatment of itching, pain, urinary disturbance or stress disease.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: August 18, 2009
    Assignee: Ono Pharmaceutical Co., Ltd.
    Inventors: Masaki Asada, Kaoru Kobayashi, Masami Narita, Kazutoyo Sato, Atsushi Kinoshita, Toshihiko Nagase, Ken Yoshikawa