Patents by Inventor Toshimitsu Konuma

Toshimitsu Konuma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7112374
    Abstract: By repeating a purification process of a light-emitting organic compound several times, a thin film made of the light-emitting organic compound to be used in an EL display device contains ionic impurities at the concentration of 0.1 ppm or lower and has a volume resistivity in the range of 3×1010 ?cm or larger. By using such a thin film as a light-emitting layer in the EL device, a current caused by reasons other than the carrier recombination can be prevented from flowing through the thin film, and deterioration caused by unnecessary heat generation can be suppressed. Accordingly, it is possible to obtain an EL display device with high reliability.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: September 26, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Toshimitsu Konuma, Mayumi Mizukami
  • Publication number: 20060192205
    Abstract: An object of the present invention is to provide an EL display device having a high operation performance and reliability. The switching TFT 201 formed within a pixel has a multi-gate structure, which is a structure which imposes an importance on reduction of OFF current value. Further, the current control TFT 202 has a channel width wider than that of the switching TFT to make a structure appropriate for flowing electric current. Morever, the LDD region 33 of the current control TFT 202 is formed so as to overlap a portion of the gate electrode 35 to make a structure which imposes importance on prevention of hot carrier injection and reduction of OFF current value.
    Type: Application
    Filed: April 20, 2006
    Publication date: August 31, 2006
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Kunitaka Yamamoto, Toshimitsu Konuma
  • Publication number: 20060097256
    Abstract: An object of the present invention is to provide an EL display device having a high operation performance and reliability. The switching TFT 201 formed within a pixel has a multi-gate structure, which is a structure which imposes an importance on reduction of OFF current value. Further, the current control TFT 202 has a channel width wider than that of the switching TFT to make a structure appropriate for flowing electric current. Morever, the LDD region 33 of the current control TFT 202 is formed so as to overlap a portion of the gate electrode 35 to make a structure which imposes importance on prevention of hot carrier injection and reduction of OFF current value.
    Type: Application
    Filed: October 27, 2005
    Publication date: May 11, 2006
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Kunitaka Yamamoto, Toshimitsu Konuma
  • Publication number: 20060046334
    Abstract: In an active matrix type light emitting device, a top surface exit type light emitting device in which an anode formed at an upper portion of an organic compound layer becomes a light exit electrode is provided. In a light emitting element made of a cathode, an organic compound layer and an anode, a protection film is formed in an interface between the anode that is a light exit electrode and the organic compound layer. The protection film formed on the organic compound layer has transmittance in the range of 70 to 100%, and when the anode is deposited by use of the sputtering method, a sputtering damage to the organic compound layer can be inhibited from being inflicted.
    Type: Application
    Filed: October 14, 2005
    Publication date: March 2, 2006
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Toshimitsu Konuma, Hiroko Yamazaki
  • Publication number: 20060046358
    Abstract: An object of the invention is to reduce the manufacturing cost of EL display devices and electronic devices incorporating the EL display devices. An EL material is formed by printing in an active matrix EL display device. Relief printing or screen printing may be used as the method of printing. Manufacturing steps of the EL layer is therefore simplified and reduction of manufacturing cost is devised.
    Type: Application
    Filed: August 12, 2005
    Publication date: March 2, 2006
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Mayumi Mizukami, Toshimitsu Konuma
  • Patent number: 6980275
    Abstract: A highly reliable liquid crystal display device in which the drive circuit region is protected, which comprises a first substrate having thereon a display region and a drive circuit region comprising a drive circuit for controlling the display in said display region and a second substrate opposed to said first substrate, provided that said regions are partitioned by a sealing agent and that a liquid crystal material is incorporated between said first substrate and said second substrate opposed to the first one, wherein, said second substrate opposed to the first is extended to oppose both of said display region and said drive circuit region provided on the first substrate.
    Type: Grant
    Filed: August 14, 1996
    Date of Patent: December 27, 2005
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toshimitsu Konuma, Takahiro Tsuji, Kouji Moriya
  • Publication number: 20050270438
    Abstract: A highly reliable liquid crystal display device in which the drive circuit region is protected, which comprises a first substrate having thereon a display region and a drive circuit region comprising a drive circuit for controlling the display in said display region and a second substrate opposed to said first substrate, provided that said regions are partitioned by a sealing agent and that a liquid crystal material is incorporated between said first substrate and said second substrate opposed to the first one, wherein, said second substrate opposed to the first is extended to oppose both of said display region and said drive circuit region provided on the first substrate.
    Type: Application
    Filed: June 9, 2005
    Publication date: December 8, 2005
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toshimitsu Konuma, Takahiro Tsuji, Kouji Moriya
  • Patent number: 6958251
    Abstract: An object of the invention is to reduce the manufacturing cost of EL display devices and electronic devices incorporating the EL display devices. An EL material is formed by printing in an active matrix EL display device. Relief printing or screen printing may be used as the method of printing. Manufacturing steps of the EL layer is therefore simplified and reduction of manufacturing cost is devised.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: October 25, 2005
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Mayumi Mizukami, Toshimitsu Konuma
  • Patent number: 6956240
    Abstract: In an active matrix type light emitting device, a top surface exit type light emitting device in which an anode formed at an upper portion of an organic compound layer becomes a light exit electrode is provided. In a light emitting element made of a cathode, an organic compound layer and an anode, a protection film is formed in an interface between the anode that is a light exit electrode and the organic compound layer. The protection film formed on the organic compound layer has transmittance in the range of 70 to 100%, and when the anode is deposited by use of the sputtering method, a sputtering damage to the organic compound layer can be inhibited from being inflicted.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: October 18, 2005
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Toshimitsu Konuma, Hiroko Yamazaki
  • Publication number: 20050224796
    Abstract: There is provided a method by which lightly doped drain (LDD) regions can be formed easily and at good yields in source/drain regions in thin film transistors possessing gate electrodes covered with an oxide covering. A lightly doped drain (LDD) region is formed by introducing an impurity into an island-shaped silicon film in a self-aligning manner, with a gate electrode serving as a mask. First, low-concentration impurity regions are formed in the island-shaped silicon film by using rotation-tilt ion implantation to effect ion doping from an oblique direction relative to the substrate. Low-concentration impurity regions are also formed below the gate electrode at this time. After that, an impurity at a high concentration is introduced normally to the substrate, so forming high-concentration impurity regions. In the above process, a low-concentration impurity region remains below the gate electrode and constitutes a lightly doped drain region.
    Type: Application
    Filed: May 26, 2005
    Publication date: October 13, 2005
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hongyong Zhang, Yasuhiko Takemura, Toshimitsu Konuma, Hideto Ohnuma, Naoaki Yamaguchi, Hideomi Suzawa, Hideki Uochi
  • Publication number: 20050208863
    Abstract: An object of the present invention is to provide an EL display device having high operation performance and reliability. A third passivation film 45 is disposed under the EL element 203 comprising a pixel electrode (anode) 46, an EL layer 47 and a cathode 48, and diffusion of alkali metals from the EL element 203 formed by ink jet method into TFTs is prevented. Further, the third passivation film 45 prevents penetration of moisture and oxygen from the TFTs, and suppress degradation of the EL element 203 by dispersing the heat generated by the EL element 203.
    Type: Application
    Filed: March 22, 2005
    Publication date: September 22, 2005
    Applicant: Semiconductor Energy Laboratory Co. Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Kunitaka Yamamoto, Toshimitsu Konuma
  • Publication number: 20050206313
    Abstract: An object of the present invention is to provide an EL display device having high operation performance and reliability. A third passivation film 45 is disposed under the EL element 203 comprising a pixel electrode (anode) 46, an EL layer 47 and a cathode 48, and diffusion of alkali metals from the EL element 203 formed by ink jet method into TFTs is prevented. Further, the third passivation film 45 prevents penetration of moisture and oxygen from the TFTs, and suppress degradation of the EL element 203 by dispersing the heat generated by the EL element 203.
    Type: Application
    Filed: March 22, 2005
    Publication date: September 22, 2005
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Kunitaka Yamamoto, Toshimitsu Konuma
  • Publication number: 20050197031
    Abstract: An object of the present invention is to provide an EL display device having high operation performance and reliability. A third passivation film 45 is disposed under the EL element 203 comprising a pixel electrode (anode) 46, an EL layer 47 and a cathode 48, and diffusion of alkali metals from the EL element 203 formed by ink jet method into TFTs is prevented. Further, the third passivation film 45 prevents penetration of moisture and oxygen from the TFTs, and suppress degradation of the EL element 203 by dispersing the heat generated by the EL element 203.
    Type: Application
    Filed: March 14, 2005
    Publication date: September 8, 2005
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Kunitaka Yamamoto, Toshimitsu Konuma
  • Publication number: 20050161667
    Abstract: An element structure is provided in which film formation irregularities and deterioration of an organic compound layer formed on an electrode are prevented in an active matrix light emitting device. After forming an insulating film so as to cover edge portions of a conductor which becomes a light emitting element electrode, polishing is performed using a CMP (chemical mechanical polishing) method in the present invention, thus forming a structure in which surfaces of a first electrode and a leveled insulating layer are coplanar. The film formation irregularities in the organic compound layer formed on the electrode can thus be prevented, and electric field concentration from the edge portions of the electrode can be prevented.
    Type: Application
    Filed: March 18, 2005
    Publication date: July 28, 2005
    Inventor: Toshimitsu Konuma
  • Publication number: 20050162092
    Abstract: Plurality of pixels (102) are arranged on the substrate. Each of the pixels (102) is provided with an EL element which utilizes as a cathode a pixel electrode (105) connected to a current control TFT (104). On a counter substrate (110), a light shielding film (112) is disposed at the position corresponding to periphery of each pixel (102), while a color filter (113) is disposed at the position corresponding to each of the pixels (102). This light shielding film makes the contour of the pixels clear, resulting in an image display with high definition. In addition, it is possible to fabricate the EL display device of the present invention with most of an existing manufacturing line for liquid crystal display devices. Thus, an amount of equipment investment can be significantly reduced, thereby resulting in a reduction in the total manufacturing cost.
    Type: Application
    Filed: March 1, 2005
    Publication date: July 28, 2005
    Inventors: Shunpei Yamazaki, Mayumi Mizukami, Toshimitsu Konuma
  • Publication number: 20050161672
    Abstract: An object of the present invention is to provide an EL display device having a high operation performance and reliability. The switching TFT 201 formed within a pixel has a multi-gate structure, which is a structure which imposes an importance on reduction of OFF current value. Further, the current control TFT 202 has a channel width wider than that of the switching TFT to make a structure appropriate for flowing electric current. Morever, the LDD region 33 of the current control TFT 202 is formed so as to overlap a portion of the gate electrode 35 to make a structure which imposes importance on prevention of hot carrier injection and reduction of OFF current value.
    Type: Application
    Filed: March 9, 2005
    Publication date: July 28, 2005
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Kunitaka Yamamoto, Toshimitsu Konuma
  • Publication number: 20050153489
    Abstract: A TFT formed on an insulating substrate source, drain and channel regions, a gate insulating film formed on at least the channel region and a gate electrode formed on the gate insulating film. Between the channel region and the drain region, a region having a higher resistivity is provided in order to reduce an Ioff current. A method for forming this structure comprises the steps of anodizing the gate electrode to form a porous anodic oxide film on the side of the gate electrode; removing a portion of the gate insulating using the porous anodic oxide film as a mask so that the gate insulating film extends beyond the gate electrode but does not completely cover the source and drain regions. Thereafter, an ion doping of one conductivity element is performed. The high resistivity region is defined under the gate insulating film.
    Type: Application
    Filed: March 14, 2005
    Publication date: July 14, 2005
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toshimitsu Konuma, Akira Sugawara, Yukiko Uehara, Hongyong Zhang, Atsunori Suzuki, Hideto Ohnuma, Naoaki Yamaguchi, Hideomi Suzawa, Hideki Uochi, Yasuhiko Takemura
  • Publication number: 20050142705
    Abstract: A TFT formed on an insulating substrate source, drain and channel regions, a gate insulating film formed on at least the channel region and a gate electrode formed on the gate insulating film. Between the channel region and the drain region, a region having a higher resistivity is provided in order to reduce an Ioff current. A method for forming this structure comprises the steps of anodizing the gate electrode to form a porous anodic oxide film on the side of the gate electrode; removing a portion of the gate insulating using the porous anodic oxide film as a mask so that the gate insulating film extends beyond the gate electrode but does not completely cover the source and drain regions. Thereafter, an ion doping of one conductivity element is performed. The high resistivity region is defined under the gate insulating film.
    Type: Application
    Filed: February 25, 2005
    Publication date: June 30, 2005
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toshimitsu Konuma, Akira Sugawara, Yukiko Uehara, Hongyong Zhang, Atsunori Suzuki, Hideto Ohnuma, Naoaki Yamaguchi, Hideomi Suzawa, Hideki Uochi, Yasuhiko Takemura
  • Patent number: 6906383
    Abstract: There is provided a method by which lightly doped drain (LDD) regions can be formed easily and at good yields in source/drain regions in thin film transistors possessing gate electrodes covered with an oxide covering. A lightly doped drain (LDD) region is formed by introducing an impurity into an island-shaped silicon film in a self-aligning manner, with a gate electrode serving as a mask. First, low-concentration impurity regions are formed in the island-shaped silicon film by using rotation-tilt ion implantation to effect ion doping from an oblique direction relative to the substrate. Low-concentration impurity regions are also formed below the gate electrode at this time. After that, an impurity at a high concentration is introduced normally to the substrate, so forming high-concentration impurity regions. In the above process, a low-concentration impurity region remains below the gate electrode and constitutes a lightly doped drain region.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: June 14, 2005
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hongyong Zhang, Yasuhiko Takemura, Toshimitsu Konuma, Hideto Ohnuma, Naoaki Yamaguchi, Hideomi Suzawa, Hideki Uochi
  • Patent number: 6905907
    Abstract: An element structure is provided in which film formation irregularities and deterioration of an organic compound layer formed on an electrode are prevented in an active matrix light emitting device. After forming an insulating film so as to cover edge portions of a conductor which becomes a light emitting element electrode, polishing is performed using a CMP (chemical mechanical polishing) method in the present invention, thus forming a structure in which surfaces of a first electrode and a leveled insulating layer are coplanar. The film formation irregularities in the organic compound layer formed on the electrode can thus be prevented, and electric field concentration from the edge portions of the electrode can be prevented.
    Type: Grant
    Filed: September 10, 2002
    Date of Patent: June 14, 2005
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Toshimitsu Konuma