Patents by Inventor Tsann Lin

Tsann Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220352333
    Abstract: A thin film transistor includes a gate electrode embedded in an insulating layer that overlies a substrate, a gate dielectric overlying the gate electrode, an active layer comprising a compound semiconductor material and overlying the gate dielectric, and a source electrode and drain electrode contacting end portions of the active layer. The gate dielectric may have thicker portions over interfaces with the insulating layer to suppress hydrogen diffusion therethrough. Additionally or alternatively, a passivation capping dielectric including a dielectric metal oxide material may be interposed between the active layer and a dielectric layer overlying the active layer to suppress hydrogen diffusion therethrough.
    Type: Application
    Filed: November 11, 2021
    Publication date: November 3, 2022
    Inventors: Min-Kun DAI, Wei-Gang CHIU, I-Cheng CHANG, Cheng-Yi WU, Han-Ting TSAI, Tsann LIN, Chung-Te LIN
  • Publication number: 20220336671
    Abstract: A planar insulating spacer layer is formed over a substrate, and a vertical stack of a gate electrode, a gate dielectric layer, and a first semiconducting metal oxide layer may be formed thereabove. The first semiconducting metal oxide layer includes atoms of a first n-type dopant at a first average dopant concentration. A second semiconducting metal oxide layer is formed over the first semiconducting metal oxide layer. Portions of the second semiconducting metal oxide layer are doped with the second n-type dopant to provide a source-side n-doped region and a drain-side n-doped region that include atoms of the second n-type dopant at a second average dopant concentration that is greater than the first average dopant concentration. Various dopants may be introduced to enhance performance of the thin film transistor.
    Type: Application
    Filed: June 29, 2022
    Publication date: October 20, 2022
    Inventors: Min-Kun Dai, I-Cheng Chang, Cheng-Yi Wu, Han-Ting Tsai, Tsann Lin, Chung-Te Lin, Wei-Gang Chiu
  • Publication number: 20220254930
    Abstract: A planar insulating spacer layer is formed over a substrate, and a vertical stack of a gate electrode, a gate dielectric layer, and a first semiconducting metal oxide layer may be formed thereabove. The first semiconducting metal oxide layer includes atoms of a first n-type dopant at a first average dopant concentration. A second semiconducting metal oxide layer is formed over the first semiconducting metal oxide layer. Portions of the second semiconducting metal oxide layer are doped with the second n-type dopant to provide a source-side n-doped region and a drain-side n-doped region that include atoms of the second n-type dopant at a second average dopant concentration that is greater than the first average dopant concentration. Various dopants may be introduced to enhance performance of the thin film transistor.
    Type: Application
    Filed: February 11, 2021
    Publication date: August 11, 2022
    Inventors: Min-Kun DAI, I-Cheng CHANG, Cheng-Yi WU, Han-Ting TSAI, Tsann LIN, Chung-Te LIN, Wei-Gang CHIU
  • Patent number: 11404586
    Abstract: A planar insulating spacer layer is formed over a substrate, and a vertical stack of a gate electrode, a gate dielectric layer, and a first semiconducting metal oxide layer may be formed thereabove. The first semiconducting metal oxide layer includes atoms of a first n-type dopant at a first average dopant concentration. A second semiconducting metal oxide layer is formed over the first semiconducting metal oxide layer. Portions of the second semiconducting metal oxide layer are doped with the second n-type dopant to provide a source-side n-doped region and a drain-side n-doped region that include atoms of the second n-type dopant at a second average dopant concentration that is greater than the first average dopant concentration. Various dopants may be introduced to enhance performance of the thin film transistor.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: August 2, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Min-Kun Dai, I-Cheng Chang, Cheng-Yi Wu, Han-Ting Tsai, Tsann Lin, Chung-Te Lin, Wei-Gang Chiu
  • Publication number: 20220231036
    Abstract: An integrated circuit device includes a ferroelectric layer that is formed with chlorine-free precursors. A ferroelectric layer formed according to the present teaching may be chlorine-free. Structures adjacent the ferroelectric layer are also formed with chlorine-free precursors. The absence of chlorine in the adjacent structures prevents diffusion of chlorine into the ferroelectric layer and prevents the formation of chlorine complexes at interfaces with the ferroelectric layer. The ferroelectric layer may be used in a memory device such as a ferroelectric field effect transistor (FeFET). The absence of chlorine ameliorates time-dependent dielectric breakdown (TDDB) and Bias Temperature Instability (BTI).
    Type: Application
    Filed: April 8, 2022
    Publication date: July 21, 2022
    Inventors: Ya-Ling Lee, Wei-Gang Chiu, Yen-Chieh Huang, Han-Ting Tsai, Tsann Lin, Yu-Ming Lin, Chung-Te Lin
  • Publication number: 20220216269
    Abstract: A memory device including bit lines, auxiliary lines, selectors, and memory cells is provided. The word lines are intersected with the bit lines. The auxiliary lines are disposed between the word lines and the of bit lines. The selectors are inserted between the bit lines and the auxiliary lines. The memory cells are inserted between the word lines and the auxiliary lines.
    Type: Application
    Filed: March 24, 2022
    Publication date: July 7, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ji-Feng Ying, Jhong-Sheng Wang, Tsann Lin
  • Publication number: 20220115586
    Abstract: A magnetic tunnel junction (MTJ) element is provided. The MTJ element includes a reference layer, a tunnel barrier layer disposed over the reference layer, a free layer disposed over the tunnel barrier layer, and a diffusion barrier layer disposed over the free layer. The MU element in accordance with the present disclosure exhibits a low resistance desired for a low-power write operation, and a high TIM coefficient desired for a low bit-error-rate (BER) read operation.
    Type: Application
    Filed: October 14, 2020
    Publication date: April 14, 2022
    Inventors: YA-LING LEE, TSANN LIN, HAN-JONG CHIA
  • Patent number: 11289538
    Abstract: A memory device including bit lines, auxiliary lines, selectors, and memory cells is provided. The word lines are intersected with the bit lines. The auxiliary lines are disposed between the word lines and the of bit lines. The selectors are inserted between the bit lines and the auxiliary lines. The memory cells are inserted between the word lines and the auxiliary lines.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: March 29, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ji-Feng Ying, Jhong-Sheng Wang, Tsann Lin
  • Publication number: 20220050150
    Abstract: In an embodiment, a device includes: a magnetoresistive random access memory cell including: a bottom electrode; a reference layer over the bottom electrode; a tunnel barrier layer over the reference layer, the tunnel barrier layer including a first composition of magnesium and oxygen; a free layer over the tunnel barrier layer, the free layer having a lesser coercivity than the reference layer; a cap layer over the free layer, the cap layer including a second composition of magnesium and oxygen, the second composition of magnesium and oxygen having a greater atomic concentration of oxygen and a lesser atomic concentration of magnesium than the first composition of magnesium and oxygen; and a top electrode over the cap layer.
    Type: Application
    Filed: August 12, 2020
    Publication date: February 17, 2022
    Inventors: Jui-Fen Chien, Wei-Gang Chiu, Tsann Lin
  • Publication number: 20220052254
    Abstract: A magnetic memory includes a first spin-orbital-transfer-spin-torque-transfer (SOT-STT) hybrid magnetic device disposed over a substrate, a second SOT-STT hybrid magnetic device disposed over the substrate, and a SOT conductive layer connected to the first and second SOT-STT hybrid magnetic devices. Each of the first and second SOT-STT hybrid magnetic devices includes a first magnetic layer, as a magnetic free layer, a spacer layer disposed under the first magnetic layer, and a second magnetic layer, as a magnetic reference layer, disposed under the spacer layer. The SOT conductive layer is disposed over the first magnetic layer of each of the first and second SOT-STT hybrid magnetic devices.
    Type: Application
    Filed: November 1, 2021
    Publication date: February 17, 2022
    Inventors: Ji-Feng YING, Jhong-Sheng WANG, Tsann LIN
  • Publication number: 20210390992
    Abstract: A method for forming a semiconductor memory structure is provided. The method includes following operations. An interlayer is formed over a first ferromagnetic layer, wherein forming the interlayer includes following operations. A first metal film is formed by sputtering a first target material. A first oxygen treatment is conducted to the first metal film to form a first metal oxide film. A second metal oxide film is formed over the first metal oxide film by sputtering a second target material different from the first target material. A second metal film is formed by sputtering a third target material. A second oxygen treatment is conducted to the second metal film to form a third metal oxide film.
    Type: Application
    Filed: June 15, 2020
    Publication date: December 16, 2021
    Inventors: Jui-Fen Chien, Hanwen Yeh, Tsann Lin
  • Publication number: 20210359002
    Abstract: Some embodiments relate to a method for manufacturing a memory device. The method includes forming a bottom electrode layer over a substrate. A first etch process is performed, thereby defining one or more holes in the bottom electrode layer and defining a bottom electrode. A pair of insulators are formed within the one or more holes such that the insulators are disposed on opposing sides of the bottom electrode. A buffer layer, a seed layer, a magnetic tunnel junction (MTJ) stack, and a top electrode are formed over the bottom electrode. A second etch process is performed to remove a portion of the buffer layer, the seed layer, the MTJ stack, and the top electrode, thereby defining a memory cell.
    Type: Application
    Filed: July 29, 2021
    Publication date: November 18, 2021
    Inventors: Tsann Lin, Chien-Min Lee, Ji-Feng Ying
  • Patent number: 11177433
    Abstract: The disclosed technology generally relates semiconductor devices, and relates more particularly to a spin transfer torque device, a method of operating the spin-transfer torque device and a method of fabricating the spin-transfer torque device. According to one aspect, a spin-transfer torque device includes a magnetic flux guide layer and a set of magnetic tunnel junction (MTJ) pillars arranged above the magnetic flux guide layer. Each one of the pillars includes a separate free layer, a separate tunnel barrier layer and a separate reference layer. A coupling layer is arranged between the magnetic flux guide layer and the MTJ pillars, wherein a magnetization of the separate free layer of each of the each of the MTJ pillars is coupled, parallel or antiparallel, to a magnetization of the magnetic flux guide layer through the coupling layer.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: November 16, 2021
    Assignee: IMEC vzw
    Inventors: Tsann Lin, Johan Swerts
  • Patent number: 11165012
    Abstract: A magnetic memory including a first spin-orbital-transfer-spin-torque-transfer (SOT-SIT) hybrid magnetic device disposed over a substrate, a second SOT-STT hybrid magnetic device disposed over the substrate, and a SOT conductive layer connected to the first and second SOT-STT hybrid magnetic devices. Each of the first and second SOT-STT hybrid magnetic devices includes a first magnetic layer, as a magnetic free layer, a spacer layer disposed under the first magnetic layer, and a second magnetic layer, as a magnetic reference layer, disposed under the spacer layer. The SOT conductive layer is disposed over the first magnetic layer of each of the first and second SOT-STT hybrid magnetic devices.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: November 2, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ji-Feng Ying, Jhong-Sheng Wang, Tsann Lin
  • Patent number: 11088201
    Abstract: Some embodiments relate to a memory device. The memory device includes a magnetoresistive random-access memory (MRAM) cell comprising a magnetic tunnel junction (MTJ). The MTJ device comprises a stack of layers, comprising a bottom electrode disposed over a substrate. A seed layer disposed over the bottom electrode. A buffer layer is disposed between the bottom electrode and the seed layer. The buffer layer prevents diffusion of a diffusive species from the bottom electrode to the seed layer.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: August 10, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsann Lin, Chien-Min Lee, Ji-Feng Ying
  • Publication number: 20210036055
    Abstract: A memory device including bit lines, auxiliary lines, selectors, and memory cells is provided. The word lines are intersected with the bit lines. The auxiliary lines are disposed between the word lines and the of bit lines. The selectors are inserted between the bit lines and the auxiliary lines. The memory cells are inserted between the word lines and the auxiliary lines.
    Type: Application
    Filed: January 9, 2020
    Publication date: February 4, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ji-Feng Ying, Jhong-Sheng Wang, Tsann Lin
  • Publication number: 20200136018
    Abstract: A magnetic memory including a first spin-orbital-transfer-spin-torque-transfer (SOT-STT) hybrid magnetic device disposed over a substrate, a second SOT-STT hybrid magnetic device disposed over the substrate, and a SOT conductive layer connected to the first and second SOT devices. Each of the first and second SOT-STT hybrid magnetic devices includes a first magnetic layer, as a magnetic free layer, a spacer layer disposed under the first magnetic layer, and a second magnetic layer, as a magnetic reference layer, disposed under the spacer layer. The SOT conductive layer is disposed over the first magnetic layer of each of the first and second SOT-STT hybrid magnetic devices.
    Type: Application
    Filed: October 3, 2019
    Publication date: April 30, 2020
    Inventors: Ji-Feng YING, Jhong-Sheng WANG, Tsann LIN
  • Publication number: 20200098408
    Abstract: Some embodiments relate to a memory device. The memory device includes a magnetoresistive random-access memory (MRAM) cell comprising a magnetic tunnel junction (MTJ). The MTJ device comprises a stack of layers, comprising a bottom electrode disposed over a substrate. A seed layer disposed over the bottom electrode. A buffer layer is disposed between the bottom electrode and the seed layer. The buffer layer prevents diffusion of a diffusive species from the bottom electrode to the seed layer.
    Type: Application
    Filed: July 5, 2019
    Publication date: March 26, 2020
    Inventors: Tsann Lin, Ji-Feng Ying, Chih-Chung Lai
  • Publication number: 20200006425
    Abstract: Some embodiments relate to a memory device. The memory device includes a magnetoresistive random-access memory (MRAM) cell comprising a magnetic tunnel junction (MTJ). The MTJ device comprises a stack of layers, comprising a bottom electrode disposed over a substrate. A seed layer disposed over the bottom electrode. A buffer layer is disposed between the bottom electrode and the seed layer. The buffer layer prevents diffusion of a diffusive species from the bottom electrode to the seed layer.
    Type: Application
    Filed: April 2, 2019
    Publication date: January 2, 2020
    Inventors: Tsann Lin, Chien-Min Lee, Ji-Feng Ying
  • Publication number: 20190189915
    Abstract: The disclosed technology generally relates semiconductor devices, and relates more particularly to a spin transfer torque device, a method of operating the spin-transfer torque device and a method of fabricating the spin-transfer torque device. According to one aspect, a spin-transfer torque device includes a magnetic flux guide layer and a set of magnetic tunnel junction (MTJ) pillars arranged above the magnetic flux guide layer. Each one of the pillars includes a separate free layer, a separate tunnel barrier layer and a separate reference layer. A coupling layer is arranged between the magnetic flux guide layer and the MTJ pillars, wherein a magnetization of the separate free layer of each of the each of the MTJ pillars is coupled, parallel or antiparallel, to a magnetization of the magnetic flux guide layer through the coupling layer.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 20, 2019
    Inventors: Tsann Lin, Johan Swerts