Patents by Inventor Tsann Lin

Tsann Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120040089
    Abstract: A current-to-perpendicular-to-plane (CPP) read sensor with multiple reference layers and associated fabrication methods are disclosed. According to one embodiment of the invention, the multiple reference layers of a CPP tunneling magnetoresistance (TMR) read sensor includes a first reference layer formed by a ferromagnetic polycrystalline Co—Fe film, a second reference layer formed by a ferromagnetic substitute-type amorphous Co—Fe—X film where X is Hf, Zr or Y, and a third reference layer formed by a ferromagnetic interstitial-type amorphous Co—Fe—B film. The first reference layer facilitates the CPP TMR read sensor to exhibit high exchange and antiparallel-coupling fields. The second reference layer provides a thermally stable flat surface, thus facilitating the CPP TMR read sensor to exhibit a low ferromagnetic-coupling field. The multiple reference layers may induce spin-dependent scattering, thus facilitating the CPP TMR sensor to exhibit a high TMR coefficient.
    Type: Application
    Filed: October 19, 2011
    Publication date: February 16, 2012
    Inventor: Tsann Lin
  • Publication number: 20120019387
    Abstract: A fall-down alarm system includes a contact detection unit, a non-contact detection unit and a fall-down evaluation unit connecting respectively to the contact detection unit and non-contact detection unit. The contact detection unit and non-contact detection unit respectively detect an abnormal detected shape of an object and abnormal life symptoms of the object, and then the fall-down evaluation unit determines a fall-down condition and sends a trigger signal to request assistance. Through the contact detection unit and non-contact detection unit respectively detecting the shape and life symptoms of the object, the erroneous fall-down judgment can be reduced.
    Type: Application
    Filed: July 20, 2011
    Publication date: January 26, 2012
    Inventors: Jin-Chern CHIOU, Tsann Lin, Shih-Che Lo, Jeng-Ren Duann, Sheng-Chuan Liang, Yung-Jiun Lin
  • Patent number: 8094421
    Abstract: A current-to-perpendicular-to-plane (CPP) read sensor with multiple reference layers and associated fabrication methods are disclosed. According to one embodiment of the invention, the multiple reference layers of a CPP tunneling magnetoresistance (TMR) read sensor includes a first reference layer formed by a ferromagnetic polycrystalline Co—Fe film, a second reference layer formed by a ferromagnetic substitute-type amorphous Co—Fe—X film where X is Hf, Zr or Y, and a third reference layer formed by a ferromagnetic interstitial-type amorphous Co—Fe—B film. The first reference layer facilitates the CPP TMR read sensor to exhibit high exchange and antiparallel-coupling fields. The second reference layer provides a thermally stable flat surface, thus facilitating the CPP TMR read sensor to exhibit a low ferromagnetic-coupling field. The multiple reference layers may induce spin-dependent scattering, thus facilitating the CPP TMR sensor to exhibit a high TMR coefficient.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: January 10, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventor: Tsann Lin
  • Patent number: 8081405
    Abstract: A current-to-perpendicular-to-plane (CPP) read sensor with multiple reference layers and associated fabrication methods are disclosed. According to one embodiment, the multiple reference layers of a CPP read sensor include a first reference layer (e.g., Co—Fe) formed by a ferromagnetic polycrystalline film, a second reference layer (e.g., Co—Fe—Hf) formed by a ferromagnetic amorphous film, a third reference layer (e.g., Co—Fe—B) formed by a ferromagnetic amorphous film, and a fourth reference layer (e.g., Co—Fe) formed by a ferromagnetic polycrystalline film. A plasma treatment is applied to the fourth reference layer for surface smoothening, and no replenishment is needed as long as the fourth reference layer is not completely removed after the plasma treatment. The fourth reference layer protects the surface of the third reference layer from spin polarization deterioration caused by the plasma treatment, thereby maintaining a strong TMR or GMR effect.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: December 20, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventor: Tsann Lin
  • Publication number: 20110236723
    Abstract: A current-perpendicular-to-plane (CPP) read sensor with Co—Fe buffer layers is proposed to improve pinning and magnetoresistance properties. The read sensor comprises first and second Co—Fe buffer layers in the lower and upper portions of a keeper layer structure, respectively, third and fourth Co—Fe buffer layers in the lower and upper portion of a reference layer structure, respectively, and a fifth Co—Fe buffer layer in the lower portion of a sense layer structure. The first buffer layer is adjacent to a pinning layer and has a specific composition to improve unidirectional-anisotropy pinning properties. The second and third buffer layers are adjacent to an antiparallel-coupling layer and have specific compositions to improve bidirectional-anisotropy pinning properties. The fourth and fifth buffer layers are adjacent to a barrier or spacer layer and have specific compositions to improve magnetoresistance properties.
    Type: Application
    Filed: March 26, 2010
    Publication date: September 29, 2011
    Inventor: Tsann Lin
  • Publication number: 20110235216
    Abstract: A read head having an improved longitudinal bias stack for stabilizing the sense layer structure of a CPP read sensor is proposed. The longitudinal bias stack is separated by an insulation layer from the CPP read sensor in each of two side regions, and is sandwiched together with the insulation layer and the CPP read sensor between lower and upper ferromagnetic shields in the read head. In a preferred embodiment of the invention, the longitudinal bias stack mainly comprises an Fe—Pt longitudinal bias layer without any seed layers, and thus the thickness of the insulation layer alone defines a spacing between the Fe—Pt longitudinal bias layer and the CPP read sensor. Since the Fe—Pt longitudinal bias layer without any seed layers exhibits good in-plane hard-magnetic properties after annealing and the spacing is narrow, the stabilization scheme is effective.
    Type: Application
    Filed: March 26, 2010
    Publication date: September 29, 2011
    Inventor: Tsann Lin
  • Publication number: 20110081558
    Abstract: A tunneling magnetoresistance (TMR) read sensor with a Co—Fe—B lower sense layer and a Co—Hf upper sense layer is disclosed. In order for the dual sense layers to exhibit a negative saturation magnetostriction (?S), their Fe contents are either substantially reduced or even eliminated, instead of adding a conventional Ni—Fe film as an additional sense layer. By optimizing compositions and thicknesses of the dual sense layers, the dual sense layers indeed exhibit a negative ?S, while the TMR sensor exhibits a TMR coefficient (?RT/RJ) of greater than 80% at a junction resistance-area product (RJAJ) of less than 2 ?-?m2.
    Type: Application
    Filed: October 2, 2009
    Publication date: April 7, 2011
    Inventor: Tsann Lin
  • Patent number: 7830641
    Abstract: A tunneling magnetoresistive (TMR) sensor with a free layer made of a Co—Fe—B alloy is disclosed. The Co—Fe—B free layer has an Fe content of not greater than 10 atomic percent, and a B content of not greater than 10 atomic percent. The free-layer structure can include a first free layer lying on a barrier layer and a second free layer lying on the first free layer. The first free layer is made of an alloy selected from Co—Fe, Co—B and Co—Fe—B alloys, while the second free layer is made of an alloy selected from Co—B and Co—Fe—B alloys.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: November 9, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Tsann Lin
  • Patent number: 7796364
    Abstract: A current-perpendicular-to-plane (CPP) magnetoresistance sensor and a method for forming a current-perpendicular-to-plane (CPP) magnetoresistance sensor. The method includes providing a ferromagnetic shield layer and disposing one or more seed layers on the ferromagnetic shield layer. The method also includes disposing a pinning layer on the one or more seed layers, wherein the pinning layer excludes PtMn, and disposing a pinned layer on the pinning layer. The shield layer, each of the one or more seed layers, the pinning layer, and the pinned layer are comprised of compounds having face-centered-cubic structures.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: September 14, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Tsann Lin
  • Publication number: 20100142099
    Abstract: A magnetic structure in one embodiment includes a tunnel barrier layer; a free layer; and a buffer layer between the tunnel barrier layer and the free layer, wherein a cross sectional area of the tunnel barrier layer in a direction parallel to a plane of deposition thereof is greater than a cross sectional area of the free layer in a direction parallel to a plane of deposition thereof, wherein a cross sectional area of the buffer layer in a direction parallel to a plane of deposition thereof is greater than a cross sectional area of the free layer in the direction parallel to the plane of deposition thereof. Additional systems and methods are also presented.
    Type: Application
    Filed: December 10, 2008
    Publication date: June 10, 2010
    Inventors: Ying Hong, Kochan Ju, Tsann Lin, Ching Hwa Tsang
  • Publication number: 20100128400
    Abstract: A current-perpendicular-to-plane (CPP) tunneling magnetoresistance (TMR) or giant magnetoresistance (GMR) read sensor with ferromagnetic amorphous buffer and polycrystalline seed layers is disclosed for reducing a read gap, in order to perform magnetic recording at higher linear densities. The ferromagnetic amorphous buffer and polycrystalline seed layers couples to a ferromagnetic lower shield, thus acting as part of the ferromagnetic lower shield and defining the upper surface of the ferromagnetic polycrystalline seed layer as the lower bound of the read gap. In addition, a CPP TMR or GMR read sensor with nonmagnetic and ferromagnetic cap layers is also disclosed for reducing the read gap, in order to perform magnetic recording at even higher linear densities. The ferromagnetic cap layer couples to a ferromagnetic upper shield, thus acting as part of the ferromagnetic upper shield and defining the lower surface of the ferromagnetic cap layer as the upper bound of the read gap.
    Type: Application
    Filed: November 21, 2008
    Publication date: May 27, 2010
    Inventor: Tsann Lin
  • Patent number: 7697244
    Abstract: A magnetic head in one embodiment includes first and second ferromagnetic shield layers, first and second nonmagnetic read-gap layers positioned between the first and second ferromagnetic shield layers, a sensor used in a current-in-plane (CIP) mode, first and second longitudinal bias layers electrically coupled with the sensor, and first and second conducting layers electrically coupled with the first and second longitudinal bias layers, respectively.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: April 13, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Tsann Lin
  • Patent number: 7672089
    Abstract: This invention provides a CPP TMR or GMR sensor with an amorphous ferromagnetic lower keeper layer and a crystalline ferromagnetic upper keeper layer. The amorphous ferromagnetic lower keeper layer strongly exchange-couples to an underlying antiferromagnetic pinning layer and planarizes its rough surface. The crystalline ferromagnetic upper keeper layer strongly antiparallel-couples to an adjacent ferromagnetic reference layer across a nonmagnetic spacer layer. The amorphous ferromagnetic lower keeper layer is preferably made of a Co—Fe—B alloy film with an Fe content high enough to ensure strong exchange-coupling to the underlying antiferromagnetic pinning layer, and with a B content high enough to ensure the formation of an amorphous phase for planarizing an otherwise rough surface due to the underlying antiferromagnetic pinning layer.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: March 2, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Tsann Lin
  • Patent number: 7652855
    Abstract: A lead overlay design of a magnetic sensor is described with sensor and free layer dimensions such that the free layer is stabilized by the large demagnetization field due to the shape anisotropy. In one embodiment the giant magnetoresistive (GMR) effect under the leads is destroyed by removing the antiferromagnetic (AFM) and pinned layers above the free layer. The overlaid lead pads are deposited on the exposed spacer layer at the sides of the mask that defines the active region. In other embodiment a layer of electrically insulating material is deposited over the sensor to encapsulate it and thereby insulate it from contact with the hardbias structures. Various embodiments with self-aligned leads are also described. In a variation of the encapsulation embodiment, the insulating material is also deposited under the lead pads so the electrical current is channeled through the active region of the sensor and sidewall deposited lead pads.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: January 26, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: James Mac Freitag, David Eugene Heim, Kuok San Ho, Wipul Pemsiri Jayasekara, Kim Y. Lee, Tsann Lin, Jyh-Shuey Lo, Mustafa Michael Pinarbasi, Ching Hwa Tsang
  • Patent number: 7650684
    Abstract: A method for fabricating a magnetic head including a spin valve sensor having a sensor layer stack that includes a pinned magnetic layer, a spacer layer formed on the pinned magnetic layer, and a free magnetic layer formed on the spacer layer. In a preferred embodiment the spacer layer is comprised of CuOx. The method includes the plasma smoothing of the upper surface of the pinned magnetic layer prior to depositing the spacer layer, and a preferred plasma gas is a mixture of argon and oxygen.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: January 26, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Wen-Yaung Lee, Tsann Lin, Danielle Mauri, Alexander Michael Zeltser
  • Publication number: 20090296285
    Abstract: A system in one approach includes a sensor stack formed of a plurality of thin film layers; a shunt formed of at least some of the same layers as the sensor stack, the shunt being spaced from the sensor stack; a first lead coupled to the sensor stack and the shunt; and a second lead coupled to the sensor stack and the shunt. A method in one embodiment includes forming a plurality of thin film layers; removing a portion of the thin film layers for defining at least a portion of a sensor stack and at least a portion of a shunt spaced front the sensor stack; forming a first lead coupled to the at least a portion of the sensor stack and the at least a portion of the shunt and a second lead coupled to the at least a portion of the sensor stack and the at least a portion of the shunt. Additional systems and methods are also presented.
    Type: Application
    Filed: May 30, 2008
    Publication date: December 3, 2009
    Inventors: Satoru Araki, Ying Hong, Edward Hin Pong Lee, Tsann Lin, David John Seagle
  • Publication number: 20090296286
    Abstract: A current-to-perpendicular-to-plane (CPP) read sensor with multiple reference layers and associated fabrication methods are disclosed. According to one embodiment, the multiple reference layers of a CPP read sensor include a first reference layer (e.g., Co—Fe) formed by a ferromagnetic polycrystalline film, a second reference layer (e.g., Co—Fe—Hf) formed by a ferromagnetic amorphous film, a third reference layer (e.g., Co—Fe—B) formed by a ferromagnetic amorphous film, and a fourth reference layer (e.g., Co—Fe) formed by a ferromagnetic polycrystalline film. A plasma treatment is applied to the fourth reference layer for surface smoothening, and no replenishment is needed as long as the fourth reference layer is not completely removed after the plasma treatment. The fourth reference layer protects the surface of the third reference layer from spin polarization deterioration caused by the plasma treatment, thereby maintaining a strong TMR or GMR effect.
    Type: Application
    Filed: May 29, 2008
    Publication date: December 3, 2009
    Inventor: Tsann Lin
  • Patent number: 7606009
    Abstract: A read sensor stabilized by bidirectional anisotropy is disclosed. The read sensor includes a longitudinal flux-closure structure comprising an antiferromagnetic pinning layer, a ferromagnetic bias layer, a nonmagnetic spacer layer, and a ferromagnetic sense layer. In this longitudinal flux-closure structure, the antiferromagnetic pinning layer directly couples to the ferromagnetic bias layer inducing strong unidirectional anisotropy, and also indirectly couples to the ferromagnetic sense layer inducing weak unidirectional anisotropy. In addition, the ferromagnetic bias layer antiparallel-couples to the ferromagnetic sense layer across the nonmagnetic spacer layer inducing optimal bidirectional anisotropy. The magnetization of the ferromagnetic bias layer thus remains rigidly pinned mainly due to the strong unidirectional anisotropy, while the magnetization of the ferromagnetic sense layer can rotate freely and stably due to the optimal bidirectional anisotropy.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: October 20, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Tsann Lin
  • Patent number: 7599153
    Abstract: A method and apparatus providing a stabilized top shield in a read head used for the longitudinal or perpendicular magnetic recording is disclosed. The top shield includes a laminate structure including at least three layers of ferromagnetic and antiferromagnetic films in a frame. Unidirectional anisotropy induced at the interface of the ferromagnetic and antiferromagnetic films is optimized by selecting suitable compositions and thicknesses to achieve the stabilization of the top shield while maintaining high permeability. In an alternative method, the top shield includes a ferromagnetic Ni—Fe film in a central region and multiple layers comprising ferromagnetic Co—Fe and Ni—Fe layers and an antiferromagnetic layer.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: October 6, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Tsann Lin
  • Publication number: 20090244791
    Abstract: The invention provides a current-perpendicular-to-plane (CPP) tunneling magnetoresistance (TMR) or giant magnetoresistance (GMR) read sensor with multiple ferromagnetic sense layers. In one embodiment of the invention, a CPP TMR read sensor comprises a first sense layer formed by a ferromagnetic polycrystalline Co—Fe film, a second sense layer formed by a ferromagnetic interstitial-type amorphous Co—Fe— B film, a third sense layer formed by a ferromagnetic substitute-type amorphous Co—Fe—X film where X is Hf, Zr or Y, and a fourth sense layer formed by a ferromagnetic Ni—Fe film. The third sense layer acts as a diffusion barrier layer to suppress Ni diffusion, thus allowing the incorporation of the Ni—Fe fourth sense layer for improving ferromagnetic properties of the multiple sense layers. The multiple sense layers induce spin-dependent scattering, thus facilitating the CPP TMR read sensor to exhibit a strong TMR effect.
    Type: Application
    Filed: March 26, 2008
    Publication date: October 1, 2009
    Inventor: Tsann Lin