Patents by Inventor Tsung-Lin Lee

Tsung-Lin Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200135889
    Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a sacrificial gate structure over an active region. A first spacer layer is formed along sidewalls and a top surface of the sacrificial gate structure. A first protection layer is formed over the first spacer layer. A second spacer layer is formed over the first protection layer. A third spacer layer is formed over the second spacer layer. The sacrificial gate structure is replaced with a replacement gate structure. The second spacer layer is removed to form an air gap between the first protection layer and the third spacer layer.
    Type: Application
    Filed: January 11, 2019
    Publication date: April 30, 2020
    Inventors: Wei-Ting Chien, Liang-Yin Chen, Yi-Hsiu Liu, Tsung-Lin Lee, Huicheng Chang
  • Publication number: 20200126988
    Abstract: A method for manufacturing a semiconductor device includes forming a fin structure over a substrate and forming a first gate structure over a first portion of the fin structure. A first nitride layer is formed over a second portion of the fin structure. The first nitride layer is exposed to ultraviolet radiation. Source/drain regions are formed at the second portion of the fin structure.
    Type: Application
    Filed: October 28, 2019
    Publication date: April 23, 2020
    Inventors: Yu-Lin YANG, Chia-Cheng HO, Chih Chieh YEH, Cheng-Yi PENG, Tsung-Lin LEE
  • Publication number: 20200119196
    Abstract: A field effect transistor includes a substrate comprising a fin structure. The field effect transistor further includes an isolation structure in the substrate. The field effect transistor further includes a source/drain (S/D) recess cavity below a top surface of the substrate. The S/D recess cavity is between the fin structure and the isolation structure. The field effect transistor further includes a strained structure in the S/D recess cavity. The strain structure includes a lower portion. The lower portion includes a first strained layer, wherein the first strained layer is in direct contact with the isolation structure, and a dielectric layer, wherein the dielectric layer is in direct contact with the substrate, and the first strained layer is in direct contact with the dielectric layer. The strained structure further includes an upper portion comprising a second strained layer overlying the first strained layer.
    Type: Application
    Filed: December 12, 2019
    Publication date: April 16, 2020
    Inventors: Tsung-Lin Lee, Chih-Hao Chang, Chih-Hsin Ko, Feng Yuan, Jeff J. Xu
  • Publication number: 20200105589
    Abstract: Different isolation liners for different type FinFETs and associated isolation feature fabrication are disclosed herein. An exemplary method includes performing a fin etching process on a substrate to form first trenches defining first fins in a first region and second trenches defining second fins in a second region. An oxide liner is formed over the first fins in the first region and the second fins in the second region. A nitride liner is formed over the oxide liner in the first region and the second region. After removing the nitride liner from the first region, an isolation material is formed over the oxide liner and the nitride liner to fill the first trenches and the second trenches. The isolation material, the oxide liner, and the nitride liner are recessed to form first isolation features (isolation material and oxide liner) and second isolation features (isolation material, nitride liner, and oxide liner).
    Type: Application
    Filed: February 14, 2019
    Publication date: April 2, 2020
    Inventors: Tzung-Yi Tsai, Tsung-Lin Lee, Yen-Ming Chen
  • Publication number: 20200098886
    Abstract: A semiconductor structure includes a first device and a second device. The first device includes: a first gate structure formed over an active region and a first air spacer disposed adjacent to the first gate structure. The second device includes: a second gate structure formed over an isolation structure and a second air spacer disposed adjacent to the second gate structure. The first air spacer and the second air spacer have different sizes.
    Type: Application
    Filed: July 26, 2019
    Publication date: March 26, 2020
    Inventors: Yi-Hsiu Liu, Feng-Cheng Yang, Tsung-Lin Lee, Wei-Yang Lee, Yen-Ming Chen, Yen-Ting Chen
  • Publication number: 20200020807
    Abstract: The present disclosure provides one embodiment of a method making semiconductor structure. The method includes forming a composite stress layer on a semiconductor substrate, wherein the forming of the composite stress layer includes forming a first stress layer of a dielectric material with a first compressive stress and forming a second stress layer of the dielectric material with a second compressive stress on the first stress layer, the second compressive stress being greater than the first compressive stress; and patterning the semiconductor substrate to form fin active regions using the composite stress layer as an etch mask.
    Type: Application
    Filed: May 16, 2019
    Publication date: January 16, 2020
    Inventors: Wei-Jen Lai, Yen-Ming Chen, Tsung-Lin Lee
  • Publication number: 20200006084
    Abstract: A semiconductor device is provided. The semiconductor device has a fin structure that protrudes vertically upwards. A lateral dimension of the fin structure is reduced. A semiconductor layer is formed on the fin structure after the reducing of the lateral dimension. An annealing process is performed to the semiconductor device after the forming of the semiconductor layer. A dielectric layer is formed over the fin structure after the performing of the annealing process.
    Type: Application
    Filed: October 12, 2018
    Publication date: January 2, 2020
    Inventors: Tzung-Yi Tsai, Yen-Ming Chen, Tsung-Lin Lee, Po-Kang Ho
  • Patent number: 10522409
    Abstract: A fin field effect transistor (FinFET) device structure with dummy fin structures and method for forming the same are provided. The FinFET device structure includes an isolation structure over a substrate and a first fin structure extended above the isolation structure. The FinFET device structure includes a second fin structure embedded in the isolation structure and a liner layer formed on sidewalls of the first fin structures and sidewalls of the second fin structures. The FinFET device structure also includes a material layer formed over the second fin structures, and the material layer and the isolation structure are made of different materials.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: December 31, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tzung-Yi Tsai, Yen-Ming Chen, Tsung-Lin Lee, Chih-Chieh Yeh
  • Patent number: 10510887
    Abstract: A field effect transistor includes a substrate comprising a fin structure. The field effect transistor further includes an isolation structure in the substrate. The field effect transistor further includes a source/drain (S/D) recess cavity below a top surface of the substrate. The S/D recess cavity is between the fin structure and the isolation structure. The field effect transistor further includes a strained structure in the S/D recess cavity. The strain structure includes a lower portion. The lower portion includes a first strained layer, wherein the first strained layer is in direct contact with the isolation structure, and a dielectric layer, wherein the dielectric layer is in direct contact with the substrate, and the first strained layer is in direct contact with the dielectric layer. The strained structure further includes an upper portion comprising a second strained layer overlying the first strained layer.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: December 17, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Lin Lee, Chih-Hao Chang, Chih-Hsin Ko, Feng Yuan, Jeff J. Xu
  • Publication number: 20190355835
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate having a plurality of nanowires over an input-output region, and a protective layer surrounding the nanowires. The protective layer is made of silicon, silicon germanium, silicon oxide, silicon nitride, silicon sulfide, or a combination thereof. The semiconductor device structure also includes a high-k dielectric layer surrounding the protective layer, and a gate electrode surrounding the high-k dielectric layer. The semiconductor device structure further includes a source/drain portion adjacent to the gate electrode, and an interlayer dielectric layer over the source/drain portion.
    Type: Application
    Filed: August 1, 2019
    Publication date: November 21, 2019
    Inventors: Chao-Ching CHENG, Wei-Sheng YUN, Shao-Ming YU, Tsung-Lin LEE, Chih-Chieh YEH
  • Patent number: 10483262
    Abstract: A method for manufacturing a semiconductor device includes forming a fin structure over a substrate and forming a first gate structure over a first portion of the fin structure. A first nitride layer is formed over a second portion of the fin structure. The first nitride layer is exposed to ultraviolet radiation. Source/drain regions are formed at the second portion of the fin structure.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: November 19, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Lin Yang, Chia-Cheng Ho, Chih Chieh Yeh, Cheng-Yi Peng, Tsung-Lin Lee
  • Publication number: 20190341473
    Abstract: The fin structure includes a first portion and a second, lower portion separated at a transition. The first portion has sidewalls that are substantially perpendicular to the major surface of the substrate. The lower portion has tapered sidewalls on opposite sides of the upper portion and a base having a second width larger than the first width.
    Type: Application
    Filed: July 15, 2019
    Publication date: November 7, 2019
    Inventors: Feng YUAN, Hung-Ming CHEN, Tsung-Lin LEE, Chang-Yun CHANG, Clement Hsingjen WANN
  • Publication number: 20190291145
    Abstract: A method of cleaning a process chamber includes following steps. A plurality of process films and a plurality of non-process films are alternately formed on an interior surface of the process chamber. A cleaning operation is performed to remove the plurality of process films and the plurality of non-process films from the interior surface of the process chamber.
    Type: Application
    Filed: March 20, 2018
    Publication date: September 26, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Lin Lee, Yi-Ming Lin, Chih-Hung Yeh, Zi-Yuang Wang
  • Publication number: 20190267293
    Abstract: An integrated circuit device includes a substrate having a first portion in a first device region and a second portion in a second device region. A first semiconductor strip is in the first device region. A dielectric liner has an edge contacting a sidewall of the first semiconductor strip, wherein the dielectric liner is configured to apply a compressive stress or a tensile stress to the first semiconductor strip. A Shallow Trench Isolation (STI) region is over the dielectric liner, wherein a sidewall and a bottom surface of the STI region is in contact with a sidewall and a top surface of the dielectric liner.
    Type: Application
    Filed: May 13, 2019
    Publication date: August 29, 2019
    Inventors: Tsung-Lin Lee, Chih Chieh Yeh, Feng Yuan, Hung-Li Chiang, Wei-Jen Lai
  • Patent number: 10395937
    Abstract: A method of forming a semiconductor device is disclosed. The method includes providing a device having a substrate and a hard mask layer over the substrate; forming a mandrel over the hard mask layer; depositing a material layer on sidewalls of the mandrel; implanting a dopant into the material layer; performing an etching process on the hard mask layer using the mandrel and the material layer as an etching mask, thereby forming a patterned hard mask layer, wherein the etching process concurrently produces a dielectric layer deposited on sidewalls of the patterned hard mask layer, the dielectric layer containing the dopant; and forming a fin by etching the substrate using the patterned hard mask layer and the dielectric layer collectively as an etching mask.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: August 27, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Tzung-Yi Tsai, Yen-Ming Chen, Dian-Hau Chen, Han-Ting Tsai, Tsung-Lin Lee, Chia-Cheng Ho, Ming-Shiang Lin
  • Patent number: 10374059
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The method includes providing a substrate having a base portion and a fin portion over the base portion. The fin portion has a channel region and a source/drain region. The method also includes forming a stack structure over the fin portion. The stack structure includes first and second semiconductor layers. The method also includes forming a source/drain portion in the stack structure at the source/drain region, and removing a portion of the second semiconductor layer in the channel region in an etching process. The remaining portion of the first semiconductor layer in the channel region forms a nanowire. The method further includes forming a gate dielectric layer surrounding the nanowire, forming a high-k dielectric layer surrounding the gate dielectric layer, and forming a gate electrode surrounding the high-k dielectric layer.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: August 6, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Ching Cheng, Wei-Sheng Yun, Shao-Ming Yu, Tsung-Lin Lee, Chih-Chieh Yeh
  • Patent number: 10355108
    Abstract: An exemplary method of forming a fin field effect transistor that includes first and second etching processes to form a fin structure. The fin structure includes an upper portion and a lower portion separated at a transition. The upper portion has sidewalls that are substantially perpendicular to the major surface of the substrate. The lower portion has tapered sidewalls on opposite sides of the upper portion and a base having a second width larger than the first width.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: July 16, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng Yuan, Hung-Ming Chen, Tsung-Lin Lee, Chang-Yun Chang, Clement Hsingjen Wann
  • Patent number: 10290550
    Abstract: An integrated circuit device includes a substrate having a first portion in a first device region and a second portion in a second device region. A first semiconductor strip is in the first device region. A dielectric liner has an edge contacting a sidewall of the first semiconductor strip, wherein the dielectric liner is configured to apply a compressive stress or a tensile stress to the first semiconductor strip. A Shallow Trench Isolation (STI) region is over the dielectric liner, wherein a sidewall and a bottom surface of the STI region is in contact with a sidewall and a top surface of the dielectric liner.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: May 14, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Lin Lee, Chih Chieh Yeh, Feng Yuan, Hung-Li Chiang, Wei-Jen Lai
  • Publication number: 20190136373
    Abstract: A chemical vapor deposition (CVD) apparatus is provided. The CVD apparatus includes a CVD chamber including multiple wall portions. A pedestal is disposed inside the CVD chamber, configured to support a substrate. A gas inlet port is disposed on one of the wall portions and below a substrate support portion of the pedestal. In addition, a gas flow guiding member is disposed inside the CVD chamber, coupled to the gas inlet port, and configured to dispense cleaning gases from the gas inlet port into the CVD chamber.
    Type: Application
    Filed: June 28, 2018
    Publication date: May 9, 2019
    Inventors: Chih-Hung YEH, Tsung-Lin LEE, Yi-Ming LIN, Sheng-Chun YANG, Tung-Ching TSENG
  • Publication number: 20190103461
    Abstract: FinFETs and methods of forming finFETs are described. According to some embodiments, a structure includes a channel region, first and second source/drain regions, a dielectric layer, and a gate electrode. The channel region includes semiconductor layers above a substrate. Each of the semiconductor layers is separated from neighboring ones of the semiconductor layers, and each of the semiconductor layers has first and second sidewalls. The first and second sidewalls are aligned along a first and second plane, respectively, extending perpendicularly to the substrate. The first and second source/drain regions are disposed on opposite sides of the channel region. The semiconductor layers extend from the first source/drain region to the second source/drain region. The dielectric layer contacts the first and second sidewalls of the semiconductor layers, and the dielectric layer extends into a region between the first plane and the second plane. The gate electrode is over the dielectric layer.
    Type: Application
    Filed: November 19, 2018
    Publication date: April 4, 2019
    Inventors: Cheng-Yi Peng, Chih Chieh Yeh, Tsung-Lin Lee