Patents by Inventor Tze-Chiang Chen

Tze-Chiang Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9166181
    Abstract: Junction field-effect transistors including inorganic channels and organic gate junctions are used in some applications for forming high resolution active matrix displays. Arrays of such junction field-effect transistors are electrically connected to thin film switching transistors and provide high drive currents for passive devices such as organic light emitting diodes.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: October 20, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Tze-Chiang Chen, Bahman Hekmatshoartabari, Ghavam G. Shahidi
  • Patent number: 9147615
    Abstract: Device architectures based on trapping and de-trapping holes or electrons and/or recombination of both types of carriers are obtained by carrier trapping either in near-interface deep ambipolar states or in quantum wells/dots, either serving as ambipolar traps in semiconductor layers or in gate dielectric/barrier layers. In either case, the potential barrier for trapping is small and retention is provided by carrier confinement in the deep trap states and/or quantum wells/dots. The device architectures are usable as three terminal or two terminal devices.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: September 29, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Tze-Chiang Chen, Kailash Gopalakrishnan, Bahman Hekmatshoartabari
  • Publication number: 20150255650
    Abstract: A method for forming a photovoltaic device includes providing a substrate. A layer is deposited to form one or more layers of a photovoltaic stack on the substrate. The depositing of the amorphous layer includes performing a high power flash deposition for depositing a first portion of the layer. A low power deposition is performed for depositing a second portion of the layer.
    Type: Application
    Filed: May 20, 2015
    Publication date: September 10, 2015
    Inventors: TZE-CHIANG CHEN, AUGUSTIN J. HONG, JEEHWAN KIM, DEVENDRA K. SADANA
  • Publication number: 20150249188
    Abstract: A method for forming a light emitting device includes forming a monocrystalline III-V emissive layer on a monocrystalline substrate and forming a first doped layer on the emissive layer. A first contact is deposited on the first doped layer. The monocrystalline substrate is removed from the emissive layer by a mechanical process. A second doped layer is formed on the emissive layer on a side from which the substrate has been removed. The second doped layer has a dopant conductivity opposite that of the first doped layer. A second contact is deposited on the second doped layer.
    Type: Application
    Filed: May 13, 2015
    Publication date: September 3, 2015
    Inventors: Tze-Chiang Chen, Bahman Hekmatshoartabari, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Publication number: 20150235123
    Abstract: Device architectures based on trapping and de-trapping holes or electrons and/or recombination of both types of carriers are obtained by carrier trapping either in near-interface deep ambipolar states or in quantum wells/dots, either serving as ambipolar traps in semiconductor layers or in gate dielectric/barrier layers. In either case, the potential barrier for trapping is small and retention is provided by carrier confinement in the deep trap states and/or quantum wells/dots. The device architectures are usable as three terminal or two terminal devices.
    Type: Application
    Filed: April 11, 2015
    Publication date: August 20, 2015
    Inventors: Ali Afzali-Ardakani, Tze-Chiang Chen, Kailash Gopalakrishnan, Bahman Hekmatshoartabari
  • Publication number: 20150236285
    Abstract: Device architectures based on trapping and de-trapping holes or electrons and/or recombination of both types of carriers are obtained by carrier trapping either in near-interface deep ambipolar states or in quantum wells/dots, either serving as ambipolar traps in semiconductor layers or in gate dielectric/barrier layers. In either case, the potential barrier for trapping is small and retention is provided by carrier confinement in the deep trap states and/or quantum wells/dots. The device architectures are usable as three terminal or two terminal devices.
    Type: Application
    Filed: April 11, 2015
    Publication date: August 20, 2015
    Inventors: Ali Afzali-Ardakani, Tze-Chiang Chen, Kailash Gopalakrishnan, Bahman Hekmatshoartabari
  • Publication number: 20150236284
    Abstract: A dense binary memory switch device combines the function of a pass transistor and a memory cell and has low programming and operation voltages. The device includes a charge storage region coupled to a gate electrode through a gate dielectric layer and directly contacting a channel region. The charge storage region contains quantum structures, deep traps or combinations thereof and is charged by carriers injected from injection regions that are in direct contact with the charge storage region. Fabrication of the device at low temperatures compatible with back-end-of-line processing is further disclosed.
    Type: Application
    Filed: February 14, 2014
    Publication date: August 20, 2015
    Applicant: International Business Machines Corporation
    Inventors: Kevin K. Chan, Tze-Chiang Chen, Kailash Gopalakrishnan, Wilfried Ernst-August Haensch, Bahman Hekmatshoartabari
  • Publication number: 20150236029
    Abstract: A dense binary memory switch device combines the function of a pass transistor and a memory cell and has low programming and operation voltages. The device includes a charge storage region coupled to a gate electrode through a gate dielectric layer and to a channel region through another dielectric layer. The charge storage region is charged by carriers injected from injection regions that are in direct contact with the charge storage region. Fabrication of the device at low temperatures compatible with back-end-of-line processing is further disclosed.
    Type: Application
    Filed: February 14, 2014
    Publication date: August 20, 2015
    Applicant: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Tze-Chiang Chen, Kailash Gopalakrishnan, Wilfried Ernst-August Haensch, Bahman Hekmatshoartabari
  • Publication number: 20150236282
    Abstract: Junction field-effect transistors including inorganic channels and organic gate junctions are used in some applications for forming high resolution active matrix displays. Arrays of such junction field-effect transistors are electrically connected to thin film switching transistors and provide high drive currents for passive devices such as organic light emitting diodes.
    Type: Application
    Filed: February 19, 2014
    Publication date: August 20, 2015
    Applicant: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Tze-Chiang Chen, Bahman Hekmatshoartabari, Ghavam G. Shahidi
  • Publication number: 20150236283
    Abstract: Device architectures based on trapping and de-trapping holes or electrons and/or recombination of both types of carriers are obtained by carrier trapping either in near-interface deep ambipolar states or in quantum wells/dots, either serving as ambipolar traps in semiconductor layers or in gate dielectric/barrier layers. In either case, the potential barrier for trapping is small and retention is provided by carrier confinement in the deep trap states and/or quantum wells/dots. The device architectures are usable as three terminal or two terminal devices.
    Type: Application
    Filed: February 14, 2014
    Publication date: August 20, 2015
    Applicant: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Tze-Chiang Chen, Kailash Gopalakrishnan, Bahman Hekmatshoartabari
  • Patent number: 9087705
    Abstract: Complementary circuits based on junction (or heterojunction) field effect transistor devices and bipolar junction (or heterojunction) transistor devices comprised of thin crystalline semiconductor-on-insulator substrates are provided which are compatible with low-cost and/or flexible substrates. Only one substrate doping type (i.e., n-type or p-type) is required for providing the complementary circuits and thus the number of masks (typically three or four) remains the same as that required for either n-channel or p-channel devices in the TFT level.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: July 21, 2015
    Assignee: International Business Machines Corporation
    Inventors: Tze-Chiang Chen, Bahman Hekmatshoar-Tabari, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 9070795
    Abstract: A method for forming a light emitting device includes forming a monocrystalline III-V emissive layer on a monocrystalline substrate and forming a first doped layer on the emissive layer. A first contact is deposited on the first doped layer. The monocrystalline substrate is removed from the emissive layer by a mechanical process. A second doped layer is formed on the emissive layer on a side from which the substrate has been removed. The second doped layer has a dopant conductivity opposite that of the first doped layer. A second contact is deposited on the second doped layer.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: June 30, 2015
    Assignee: International Business Machines Corporation
    Inventors: Tze-Chiang Chen, Bahman Hekmatshoartabari, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 9059245
    Abstract: Semiconductor-on-insulator (SOI) substrates including a buried oxide (BOX) layer having a thickness of less than 300 ? are provided. The (SOI) substrates having the thin BOX layer are provided using a method including a step in which oxygen ions are implanted at high substrate temperatures (greater than 600° C.), and at a low implant energy (less than 40 keV). An anneal step in an oxidizing atmosphere follows the implant step and is performed at a temperature less than 1250° C. The anneal step in oxygen containing atmosphere converts the region containing implanted oxygen atoms formed by the implant step into a BOX having a thickness of less than 300 ?. In some instances, the top semiconductor layer of the SOI substrate has a thickness of less than 300 ?.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: June 16, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Tze-Chiang Chen, Joel P. de Souza, Devendra K. Sadana, Ghavam G. Shahidi
  • Patent number: 9059007
    Abstract: Complementary circuits based on junction (or heterojunction) field effect transistor devices and bipolar junction (or heterojunction) transistor devices comprised of thin crystalline semiconductor-on-insulator substrates are provided which are compatible with low-cost and/or flexible substrates. Only one substrate doping type (i.e., n-type or p-type) is required for providing the complementary circuits and thus the number of masks (typically three or four) remains the same as that required for either n-channel or p-channel devices in the TFT level.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: June 16, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Tze-Chiang Chen, Bahman Hekmatshoar-Tabari, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 9041079
    Abstract: An optoelectronic device may include an insulating substrate, a semiconductor channel region located on the insulating substrate, and a source region and a drain region in contact with the semiconductor channel region. A photoswitchable material may be located on the semiconductor channel region between the source region and the drain region, such that the photoswitchable material includes a first structural state based on being exposed to a first optical wavelength, and includes a second structural state based on being exposed to a second optical wavelength. The first structural state causes a first electrical current to flow between the source region and the drain region, while the second structural state causes a second electrical current to flow between the source region and the drain region.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: May 26, 2015
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Tze-Chiang Chen, Bahman Hekmatshoartabari
  • Publication number: 20150115369
    Abstract: First and second template epitaxial semiconductor material portions including different semiconductor materials are formed within a dielectric template material layer on a single crystalline substrate. Heteroepitaxy is performed to form first and second epitaxial semiconductor portions on the first and second template epitaxial semiconductor material portions, respectively. At least one dielectric bonding material layer is deposited, and a handle substrate is bonded to the at least one dielectric bonding material layer. The single crystalline substrate, the dielectric template material layer, and the first and second template epitaxial semiconductor material portions are subsequently removed. Elemental semiconductor devices and compound semiconductor devices can be formed on the first and second semiconductor portions, which are embedded within the at least one dielectric bonding material layer on the handle substrate.
    Type: Application
    Filed: January 9, 2015
    Publication date: April 30, 2015
    Inventors: Tze-Chiang Chen, Cheng-Wei Cheng, Devendra K. Sadana, Kuen-Ting Shiu
  • Patent number: 8975635
    Abstract: First and second template epitaxial semiconductor material portions including different semiconductor materials are formed within a dielectric template material layer on a single crystalline substrate. Heteroepitaxy is performed to form first and second epitaxial semiconductor portions on the first and second template epitaxial semiconductor material portions, respectively. At least one dielectric bonding material layer is deposited, and a handle substrate is bonded to the at least one dielectric bonding material layer. The single crystalline substrate, the dielectric template material layer, and the first and second template epitaxial semiconductor material portions are subsequently removed. Elemental semiconductor devices and compound semiconductor devices can be formed on the first and second semiconductor portions, which are embedded within the at least one dielectric bonding material layer on the handle substrate.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: March 10, 2015
    Assignee: International Business Machines Corporation
    Inventors: Tze-Chiang Chen, Cheng-Wei Cheng, Devendra K. Sadana, Kuen-Ting Shiu
  • Patent number: 8969115
    Abstract: A transparent conductive electrode stack containing a work function adjusted carbon-containing material is provided. Specifically, the transparent conductive electrode stack includes a layer of a carbon-containing material and a layer of a work function modifying material. The presence of the work function modifying material in the transparent conductive electrode stack shifts the work function of the layer of carbon-containing material to a higher value for better hole injection into the OLED device as compared to a transparent conductive electrode that includes only a layer of carbon-containing material and no work function modifying material.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: March 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Tze-Chiang Chen, James B. Hannon, Ning Li, Satoshi Oida, George S. Tulevski, Devendra K. Sadana
  • Patent number: 8927323
    Abstract: A photovoltaic device includes a crystalline substrate having a first dopant conductivity, an interdigitated back contact and a front surface field structure. The front surface field structure includes a crystalline layer formed on the substrate and a noncrystalline layer formed on the crystalline layer. The crystalline layer and the noncrystalline layer are doped with dopants having a same dopant conductivity as the substrate. Methods are also disclosed.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: January 6, 2015
    Assignee: International Business Machines Corporation
    Inventors: Tze-Chiang Chen, Bahman Hekmatshoartabari, Devendra K. Sadana, Davood Shahrjerdi
  • Publication number: 20140361303
    Abstract: Complementary circuits based on junction (or heterojunction) field effect transistor devices and bipolar junction (or heterojunction) transistor devices comprised of thin crystalline semiconductor-on-insulator substrates are provided which are compatible with low-cost and/or flexible substrates. Only one substrate doping type (i.e., n-type or p-type) is required for providing the complementary circuits and thus the number of masks (typically three or four) remains the same as that required for either n-channel or p-channel devices in the TFT level.
    Type: Application
    Filed: June 5, 2013
    Publication date: December 11, 2014
    Inventors: Tze-Chiang Chen, Bahman Hekmatshoar-Tabari, Ghavam G. Shahidi, Davood Shahrjerdi