Patents by Inventor Tze-Liang Lee

Tze-Liang Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11395373
    Abstract: An apparatus, a system and a method are disclosed. An exemplary method includes providing a wafer process chamber and a plurality of radiant heat elements under the wafer process chamber, receiving a wafer holder configured to be used in the wafer process chamber, and processing a wafer located on the wafer holder in the wafer process chamber. The wafer holder includes: a wafer contact portion including an upper surface and a lower surface, an exterior portion including an upper surface and a lower surface, and a tapered region formed in the wafer contact portion.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: July 19, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi-Hung Lin, Li-Ting Wang, Tze-Liang Lee
  • Publication number: 20220223422
    Abstract: A method includes forming a dummy gate stack on a semiconductor fin, forming gate spacers on sidewalls of the dummy gate stack, forming a first inter-layer dielectric, with the gate spacers and the dummy gate stack being in the first inter-layer dielectric, removing the dummy gate stack to form a trench between the gate spacers, forming a replacement gate stack in the trench, and depositing a dielectric capping layer. A bottom surface of the dielectric capping layer contacts a first top surface of the replacement gate stack and a second top surface of the first inter-layer dielectric. A second inter-layer dielectric is deposited over the dielectric capping layer. A source/drain contact plug is formed and extends into the second inter-layer dielectric, the dielectric capping layer, and the first inter-layer dielectric.
    Type: Application
    Filed: March 3, 2021
    Publication date: July 14, 2022
    Inventors: Pei-Yu Chou, Tze-Liang Lee
  • Publication number: 20220216147
    Abstract: A semiconductor device and a method of forming the same are provided. The semiconductor device includes a substrate, a gate structure, a dielectric structure and a contact structure. The substrate has source/drain (S/D) regions. The gate structure is on the substrate and between the S/D regions. The dielectric structure covers the gate structure. The contact structure penetrates through the dielectric structure to connect to the S/D region. A lower portion of a sidewall of the contact structure is spaced apart from the dielectric structure by an air gap therebetween, while an upper portion of the sidewall of the contact structure is in contact with the dielectric structure.
    Type: Application
    Filed: March 23, 2022
    Publication date: July 7, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Pei-Yu Chou, Jr-Hung Li, Liang-Yin Chen, Su-Hao Liu, Tze-Liang Lee, Meng-Han Chou, Kuo-Ju Chen, Huicheng Chang, Tsai-Jung Ho, Tzu-Yang Ho
  • Publication number: 20220208603
    Abstract: A method for forming a semiconductor device structure is provided. The method includes successively forming a first multi-layer etch stop structure and an insulating layer over a first conductive feature. The insulating layer and the first multi-layer etch stop structure are successively etched to form an opening substantially aligned to the first conductive feature. A second conductive feature is formed in the opening. The formation of the first multi-layer etch stop structure and the second multi-layer etch stop structure includes forming a first metal-containing dielectric layer, forming a silicon-containing dielectric layer over the first metal-containing dielectric layer, and forming a second metal-containing dielectric layer over the silicon-containing dielectric layer. The second metal-containing dielectric layer has a material that is different from the material of the first metal-containing dielectric layer.
    Type: Application
    Filed: March 16, 2022
    Publication date: June 30, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Cheng SHIH, Tze-Liang LEE, Jen-Hung WANG, Yu-Kai LIN, Su-Jen SUNG
  • Patent number: 11373947
    Abstract: An interconnect structure includes an interconnect structure includes an etching stop layer; a dielectric layer and an insert layer on the etching stop layer, and a conductive feature in the dielectric layer, the insert layer and the etching stop layer. A material of the insert layer is different from the dielectric layer and the etching stop layer.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: June 28, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Cheng Chou, Chung-Chi Ko, Tze-Liang Lee
  • Publication number: 20220181143
    Abstract: An apparatus includes a vacuum chamber, a wafer transfer mechanism, a first gas source, a second gas source and a reuse gas pipe. The vacuum chamber is divided into at least three reaction regions including a first reaction region, a second reaction region and a third reaction region. The wafer transfer mechanism is structured to transfer a wafer from the first reaction region to the third reaction region via the second reaction region. The first gas source supplies a first gas to the first reaction region via a first gas pipe, and a second gas source supplies a second gas to the second reaction region via a second gas pipe. The reuse gas pipe is connected between the first reaction region and the third reaction region for supplying an unused first gas collected in the first reaction region to the third reaction region.
    Type: Application
    Filed: February 3, 2022
    Publication date: June 9, 2022
    Inventors: Tsai-Fu HSIAO, Kuang-Yuan HSU, Pei-Ren JENG, Tze-Liang LEE
  • Patent number: 11342444
    Abstract: A method includes forming a first and a second dummy gate stack crossing over a semiconductor region, forming an ILD to embed the first and the second dummy gate stacks therein, replacing the first and the second dummy gate stacks with a first and a second replacement gate stack, respectively, performing a first etching process to form a first opening. A portion of the first replacement gate stack and a portion of the second replacement gate stack are removed. The method further includes filling the first opening to form a dielectric isolation region, performing a second etching process to form a second opening, with the ILD being etched, and the dielectric isolation region being exposed to the second opening, forming a contact spacer in the second opening, and filling a contact plug in the second opening. The contact plug is between opposite portions of the contact spacer.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: May 24, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ting-Gang Chen, Tai-Chun Huang, Ming-Chang Wen, Shu-Yuan Ku, Fu-Kai Yang, Tze-Liang Lee, Yung-Cheng Lu, Yi-Ting Fu
  • Publication number: 20220157934
    Abstract: A method includes depositing a first dielectric layer in an opening, the first dielectric layer comprising a semiconductor element and a non-semiconductor element. The method further includes depositing a semiconductor layer on the first dielectric layer, the semiconductor layer comprising a first element that is the same as the semiconductor element. The method further includes introducing a second element to the semiconductor layer wherein the second element is the same as the non-semiconductor element. The method further includes applying a thermal annealing process to the semiconductor layer to change the semiconductor layer into a second dielectric layer.
    Type: Application
    Filed: January 31, 2022
    Publication date: May 19, 2022
    Inventors: Yen-Chun Huang, Bor Chiuan Hsieh, Pei-Ren Jeng, Tai-Chun Huang, Tze-Liang Lee
  • Patent number: 11328952
    Abstract: A device, structure, and method are provided whereby an insert layer is utilized to provide additional support for surrounding dielectric layers. The insert layer may be applied between two dielectric layers. Once formed, trenches and vias are formed within the composite layers, and the insert layer will help to provide support that will limit or eliminate undesired bending or other structural motions that could hamper subsequent process steps, such as filling the trenches and vias with conductive material.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: May 10, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Cheng Chou, Chih-Chien Chi, Chung-Chi Ko, Yao-Jen Chang, Chen-Yuan Kao, Kai-Shiang Kuo, Po-Cheng Shih, Tze-Liang Lee, Jun-Yi Ruan
  • Publication number: 20220123115
    Abstract: A semiconductor device a method of forming the same are provided. A semiconductor device includes a gate stack over a substrate. A first dielectric layer is over the gate stack. The first dielectric layer includes a first material. A second dielectric layer is over the first dielectric layer. The second dielectric layer includes a second material different from the first material. A first conductive feature is adjacent the gate stack. A second conductive feature is over and in physical contact with a topmost surface of the first conductive feature. A bottommost surface of the second conductive feature is in physical contact with a topmost surface of the second dielectric layer.
    Type: Application
    Filed: March 5, 2021
    Publication date: April 21, 2022
    Inventors: Pei-Yu Chou, Jr-Hung Li, Tze-Liang Lee
  • Publication number: 20220100087
    Abstract: An organometallic precursor for extreme ultraviolet (EUV) lithography is provided. An organometallic precursor includes a chemical formula of MaXbLc, where M is a metal, X is a multidentate aromatic ligand that includes a pyrrole-like nitrogen and a pyridine-like nitrogen, L is an extreme ultraviolet (EUV) cleavable ligand, a is between 1 and 2, b is equal to or greater than 1, and c is equal to or greater than 1.
    Type: Application
    Filed: February 17, 2021
    Publication date: March 31, 2022
    Inventors: Chih-Cheng Liu, Yi-Chen Kuo, Yen-Yu Chen, Jr-Hung Li, Chi-Ming Yang, Tze-Liang Lee
  • Publication number: 20220102200
    Abstract: In one exemplary aspect, the present disclosure is directed to a method for lithography patterning. The method includes providing a substrate and forming a target layer over the substrate. A patterning layer is formed by depositing a first layer having an organic composition having a composition including at least 50 atomic percentage carbon; depositing a second layer including silicon; and depositing a photosensitive layer on the second layer. In some implementations, the first layer is deposited by ALD, CVD, or PVD processes.
    Type: Application
    Filed: March 24, 2021
    Publication date: March 31, 2022
    Inventors: Szu-Ping TUNG, Chun-Kai CHEN, Tze-Liang LEE, Yi-Nien SU
  • Publication number: 20220102150
    Abstract: In one exemplary aspect, the present disclosure is directed to a method for lithography patterning. The method includes providing a substrate and forming a target layer over the substrate. A patterning layer is formed by depositing a first layer having an organic composition; depositing a second layer including over 50 atomic percent of silicon; and depositing a photosensitive layer on the second layer. In some implementations, the second layer is deposited by ALD, CVD, or PVD processes.
    Type: Application
    Filed: March 26, 2021
    Publication date: March 31, 2022
    Inventors: Szu-Ping TUNG, Chun-Kai CHEN, Tze-Liang LEE, Yi-Nien SU
  • Publication number: 20220102508
    Abstract: A method includes forming a gate structure over a substrate. A dielectric cap is formed over the gate structure. A source/drain contact is formed over a source/drain region over the substrate. An etch stop layer is selectively formed over the dielectric cap such that the etch stop layer expose the source/drain contact. An interlayer dielectric is formed over the etch stop layer and the source/drain contact. A source/drain via is formed in the ILD and is connected to the source/drain contact.
    Type: Application
    Filed: March 3, 2021
    Publication date: March 31, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventor: Tze-Liang LEE
  • Publication number: 20220100086
    Abstract: An organometallic precursor for extreme ultraviolet (EUV) lithography is provided. An organometallic precursor includes an aromatic di-dentate ligand, a transition metal coordinated to the aromatic di-dentate ligand, and an extreme ultraviolet (EUV) cleavable ligand coordinated to the transition metal. The aromatic di-dentate ligand includes a plurality of pyrazine molecules.
    Type: Application
    Filed: February 16, 2021
    Publication date: March 31, 2022
    Inventors: Chih-Cheng Liu, Yi-Chen Kuo, Yen-Yu Chen, Jr-Hung Li, Chi-Ming Yang, Tze-Liang Lee
  • Publication number: 20220102143
    Abstract: A method includes forming a metal-containing hard mask layer over a dielectric layer, wherein the metal-containing hard mask layer has a Young's modulus greater than about 400 MPa and a tensile stress greater than about 600 MPa, patterning the metal-containing hard mask layer to form an opening in the metal-containing hard mask layer, and etching the dielectric layer using the metal-containing hard mask layer as an etching mask. The opening extends into the dielectric layer. The opening is filled with a conductive material to form a conductive feature. The metal-containing hard mask layer is then removed.
    Type: Application
    Filed: May 27, 2021
    Publication date: March 31, 2022
    Inventors: Chun-Kai Chen, JeiMing Chen, Tze-Liang Lee
  • Publication number: 20220100088
    Abstract: Metal-comprising resist layers (for example, metal oxide resist layers), methods for forming the metal-comprising resist layers, and lithography methods that implement the metal-comprising resist layers are disclosed herein that can improve lithography resolution. An exemplary method includes forming a metal oxide resist layer over a workpiece by performing deposition processes to form metal oxide resist sublayers of the metal oxide resist layer over the workpiece and performing a densification process on at least one of the metal oxide resist sublayers. Each deposition process forms a respective one of the metal oxide resist sublayers. The densification process increases a density of the at least one of the metal oxide resist sublayers. Parameters of the deposition processes and/or parameters of the densification process can be tuned to achieve different density profiles, different density characteristics, and/or different absorption characteristics to optimize patterning of the metal oxide resist layer.
    Type: Application
    Filed: April 15, 2021
    Publication date: March 31, 2022
    Inventors: Yi-Chen Kuo, Chih-Cheng Liu, Yen-Yu Chen, Jr-Hung Li, Chi-Ming Yang, Tze-Liang Lee
  • Patent number: 11289417
    Abstract: A semiconductor device and a method of forming the same are provided. The semiconductor device includes a substrate, a gate structure, a dielectric structure and a contact structure. The substrate has source/drain (S/D) regions. The gate structure is on the substrate and between the S/D regions. The dielectric structure covers the gate structure. The contact structure penetrates through the dielectric structure to connect to the S/D region. A lower portion of a sidewall of the contact structure is spaced apart from the dielectric structure by an air gap therebetween, while an upper portion of the sidewall of the contact structure is in contact with the dielectric structure.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: March 29, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Pei-Yu Chou, Jr-Hung Li, Liang-Yin Chen, Su-Hao Liu, Tze-Liang Lee, Meng-Han Chou, Kuo-Ju Chen, Huicheng Chang, Tsai-Jung Ho, Tzu-Yang Ho
  • Patent number: 11282712
    Abstract: A method for manufacturing a semiconductor device includes forming a first insulating film over a semiconductor substrate and forming a second insulating film on the first insulating film. The first insulating film is a tensile film having a first tensile stress and the second insulating film is either a tensile film having a second tensile stress that is less than the first tensile stress or a compressive film. The first insulating film and second insulating film are formed of a same material. A metal hard mask layer is formed on the second insulating film.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: March 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jung-Hau Shiu, Chung-Chi Ko, Tze-Liang Lee, Yu-Yun Peng
  • Patent number: 11282742
    Abstract: A semiconductor device structure is provided. The structure includes a conductive feature formed in an insulating layer. The structure also includes a first metal-containing dielectric layer formed over the insulating layer and covering the top surface of the conductive feature. The structure further includes a silicon-containing dielectric layer formed over the first metal-containing dielectric layer. In addition, the structure includes a second metal-containing dielectric layer formed over the silicon-containing dielectric layer. The second metal-containing dielectric layer includes a material that is different than the material of the first metal-containing dielectric layer.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: March 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Cheng Shih, Tze-Liang Lee, Jen-Hung Wang, Yu-Kai Lin, Su-Jen Sung