Patents by Inventor Tze-Liang Lee

Tze-Liang Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200295131
    Abstract: A method includes depositing a first dielectric layer in an opening, the first dielectric layer comprising a semiconductor element and a non-semiconductor element. The method further includes depositing a semiconductor layer on the first dielectric layer, the semiconductor layer comprising a first element that is the same as the semiconductor element. The method further includes introducing a second element to the semiconductor layer wherein the second element is the same as the non-semiconductor element. The method further includes applying a thermal annealing process to the semiconductor layer to change the semiconductor layer into a second dielectric layer.
    Type: Application
    Filed: June 1, 2020
    Publication date: September 17, 2020
    Inventors: Yen-Chun HUANG, Bor Chiuan Hsieh, Pei-Ren Jeng, Tai-Chun Huang, Tze-Liang Lee
  • Patent number: 10734520
    Abstract: An integrated circuit structure includes a gate stack over a semiconductor substrate, and an opening extending into the semiconductor substrate, wherein the opening is adjacent to the gate stack. A first silicon germanium region is disposed in the opening, wherein the first silicon germanium region has a first germanium percentage. A second silicon germanium region is over the first silicon germanium region. The second silicon germanium region comprises a portion in the opening. The second silicon germanium region has a second germanium percentage greater than the first germanium percentage. A silicon cap substantially free from germanium is over the second silicon germanium region.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: August 4, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsueh-Chang Sung, Kun-Mu Li, Tze-Liang Lee, Chii-Horng Li, Tsz-Mei Kwok
  • Patent number: 10727045
    Abstract: A method of manufacturing a semiconductor device includes depositing a dielectric layer over a substrate, performing a first patterning to form an opening in the dielectric layer, and depositing an oxide film over and contacting the dielectric layer and within the opening in the dielectric layer. The oxide film is formed from multiple precursors that are free of O2, and depositing the oxide film includes forming a plasma of a first precursor of the multiple precursors.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: July 28, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wan-Lin Tsai, Jung-Hau Shiu, Ching-Yu Chang, Jen Hung Wang, Shing-Chyang Pan, Tze-Liang Lee
  • Patent number: 10727342
    Abstract: An integrated circuit structure includes a gate stack over a semiconductor substrate, and a silicon germanium region extending into the semiconductor substrate and adjacent to the gate stack. The silicon germanium region has a top surface, with a center portion of the top surface recessed from edge portions of the top surface to form a recess. The edge portions are on opposite sides of the center portion.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: July 28, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kun-Mu Li, Tsz-Mei Kwok, Hsueh-Chang Sung, Chii-Horng Li, Tze-Liang Lee
  • Patent number: 10720526
    Abstract: A method includes etching a first portion and a second portion of a dummy gate stack to form a first opening and a second opening, respectively, and depositing a silicon nitride layer to fill the first opening and the second opening. The deposition of the silicon nitride layer comprises a first process selected from treating the silicon nitride layer using hydrogen radicals, implanting the silicon nitride layer, and combinations thereof. The method further includes etching a third portion of the dummy gate stack to form a trench, etching a semiconductor fin underlying the third portion to extend the trench down into a bulk portion of a semiconductor substrate underlying the dummy gate stack, and depositing a second silicon nitride layer into the trench.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: July 21, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ting Ko, Han-Chi Lin, Chunyao Wang, Ching Yu Huang, Tze-Liang Lee, Yung-Chih Wang
  • Patent number: 10672866
    Abstract: A method includes depositing a first dielectric layer in an opening, the first dielectric layer comprising a semiconductor element and a non-semiconductor element. The method further includes depositing a semiconductor layer on the first dielectric layer, the semiconductor layer comprising a first element that is the same as the semiconductor element. The method further includes introducing a second element to the semiconductor layer wherein the second element is the same as the non-semiconductor element. The method further includes applying a thermal annealing process to the semiconductor layer to change the semiconductor layer into a second dielectric layer.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: June 2, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yen-Chun Huang, Bor Chiuan Hsieh, Pei-Ren Jeng, Tai-Chun Huang, Tze-Liang Lee
  • Publication number: 20200152449
    Abstract: A method of descumming a dielectric layer is provided. In an embodiment the dielectric layer is deposited over a substrate, and a photoresist is applied, exposed, and developed after the photoresist has been applied. Once the pattern of the photoresist is transferred to the underlying dielectric layer, a descumming process is performed, wherein the descumming process utilizes a mixture of a carbon-containing precursor, a descumming precursor, and a carrier gas. The mixture is ignited into a treatment plasma, and the treatment plasma is applied to the dielectric layer in order to descum the dielectric layer.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 14, 2020
    Inventors: Wan-Yi Kao, Kuang-Yuan Hsu, Tze-Liang Lee
  • Publication number: 20200135462
    Abstract: A method for manufacturing an integrated circuit includes patterning a plurality of photomask layers over a substrate, partially backfilling the patterned plurality of photomask layers with a first material using atomic layer deposition, completely backfilling the patterned plurality of photomask layers with a second material using atomic layer deposition, removing the plurality of photomask layers to form a masking structure comprising at least one of the first and second materials, and transferring a pattern formed by the masking structure to the substrate and removing the masking structure. The first material includes a silicon dioxide, silicon carbide, or carbon material, and the second material includes a metal oxide or metal nitride material.
    Type: Application
    Filed: September 26, 2019
    Publication date: April 30, 2020
    Inventors: Ching-Yu Chang, Jung-Hau Shiu, Jen Hung Wang, Tze-Liang Lee
  • Publication number: 20200135488
    Abstract: A method for manufacturing a semiconductor device includes forming a first insulating film over a semiconductor substrate and forming a second insulating film on the first insulating film. The first insulating film is a tensile film having a first tensile stress and the second insulating film is either a tensile film having a second tensile stress that is less than the first tensile stress or a compressive film. The first insulating film and second insulating film are formed of a same material. A metal hard mask layer is formed on the second insulating film.
    Type: Application
    Filed: December 23, 2019
    Publication date: April 30, 2020
    Inventors: Jung-Hau SHIU, Chung-Chi KO, Tze-Liang LEE, Yu-Yun PENG
  • Publication number: 20200123656
    Abstract: A system and method for plasma enhanced deposition processes. An exemplary semiconductor manufacturing system includes a susceptor configured to hold a semiconductor wafer and a sector disposed above the susceptor. The sector includes a first plate and an overlying second plate, operable to form a plasma there between. The first plate includes a plurality of holes extending through the first plate, which vary in at least one of diameter and density from a first region of the first plate to a second region of the first plate.
    Type: Application
    Filed: December 20, 2019
    Publication date: April 23, 2020
    Inventors: Kun-Mo LIN, Yi-Hung LIN, Jr-Hung LI, Tze-Liang LEE, Ting-Gang CHEN, Chung-Ting KO
  • Publication number: 20200098919
    Abstract: A device including a gate stack over a semiconductor substrate having a pair of spacers abutting sidewalls of the gate stack. A recess is formed in the semiconductor substrate adjacent the gate stack. The recess has a first profile having substantially vertical sidewalls and a second profile contiguous with and below the first profile. The first and second profiles provide a bottle-neck shaped profile of the recess in the semiconductor substrate, the second profile having a greater width within the semiconductor substrate than the first profile. The recess is filled with a semiconductor material. A pair of spacers are disposed overly the semiconductor substrate adjacent the recess.
    Type: Application
    Filed: November 26, 2019
    Publication date: March 26, 2020
    Inventors: Eric PENG, Chao-Cheng CHEN, Chii-Horng LI, Ming-Hua YU, Shih-Hao LO, Syun-Ming JANG, Tze-Liang LEE, Ying Hao HSIEH
  • Publication number: 20200095682
    Abstract: A semiconductor fabrication apparatus includes a processing chamber; a wafer stage configured in the processing chamber; and a chemical delivery mechanism configured in the processing chamber to provide a chemical to a reaction zone in the processing chamber. The chemical delivery mechanism includes an edge chemical injector, a first radial chemical injector, and a second radial chemical injector configured on three sides of the reaction zone.
    Type: Application
    Filed: November 27, 2019
    Publication date: March 26, 2020
    Inventors: Anthony Lin, Ching-Lun Lai, Pei-Ren Jeng, Tze-Liang Lee
  • Publication number: 20200090984
    Abstract: A method includes forming a carbon-containing layer with a carbon atomic percentage greater than about 25 percent over a first hard mask layer, forming a capping layer over the carbon-containing layer, forming a first photo resist over the capping layer, and etching the capping layer and the carbon-containing layer using the first photo resist as a first etching mask. The first photo resist is then removed. A second photo resist is formed over the capping layer. The capping layer and the carbon-containing layer are etched using the second photo resist as a second etching mask. The second photo resist is removed. A third photo resist under the carbon-containing layer is etched using the carbon-containing layer as etching mask. A dielectric layer underlying the third photo resist is etched to form via openings using the third photo resist as etching mask. The via openings are filled with a conductive material.
    Type: Application
    Filed: November 25, 2019
    Publication date: March 19, 2020
    Inventors: Chun-Kai Chen, Jung-Hau Shiu, Chia Cheng Chou, Chung-Chi Ko, Tze-Liang Lee, Chih-Hao Chen, Shing-Chyang Pan
  • Publication number: 20200075319
    Abstract: Embodiments provide a patterning process. A photoresist layer is patterned. At least portions of the photoresist layer are converted from an organic material to an inorganic material by a deposition process of a metal oxide. All or some of the patterned photoresist layer may be converted to a carbon-metal-oxide. A metal oxide crust may be formed over the patterned photoresist layer. After conversion, the patterned photoresist layer is used as an etch mask to etch an underlying layer.
    Type: Application
    Filed: August 31, 2018
    Publication date: March 5, 2020
    Inventors: Ching-Yu Chang, Jung-Hau Shiu, Wei-Ren Wang, Shing-Chyang Pan, Tze-Liang Lee
  • Publication number: 20200040450
    Abstract: Systems and methods for supplying a precursor material for an atomic layer deposition (ALD) process are provided. A gas supply provides one or more precursor materials to a deposition chamber. The deposition chamber receives the one or more precursor materials via an input line. A gas circulation system is coupled to an output line of the deposition chamber. The gas circulation system includes a gas composition detection system configured to produce an output signal indicating a composition of a gas exiting the deposition chamber through the output line. The gas circulation system also includes a circulation line configured to transport the gas exiting the deposition chamber to the input line. A controller is coupled to the gas supply. The controller controls the providing of the one or more precursor materials by the gas supply based on the output signal of the gas composition detection system.
    Type: Application
    Filed: October 14, 2019
    Publication date: February 6, 2020
    Inventors: Bor-Chiuan Hsieh, Chien-Kuo Huang, Tai-Chun Huang, Kuang-Yuan Hsu, Tze-Liang Lee
  • Publication number: 20200032415
    Abstract: An IC fabrication system for facilitating improved thermal uniformity includes a chamber within which an IC process is performed on a substrate, a heating mechanism configured to heat the substrate, and a substrate-retaining device configured to retain the substrate in the chamber. The substrate-retaining device includes a contact surface configured to contact an edge of the retained substrate without the substrate-retaining device contacting a circumferential surface of the retained substrate. The substrate-retaining device includes a plurality of contact regions and a plurality of noncontact regions disposed at a perimeter, where the plurality of noncontact regions is interspersed with the plurality of contact regions. Each of the plurality of noncontact regions includes the contact surface.
    Type: Application
    Filed: October 7, 2019
    Publication date: January 30, 2020
    Inventors: Yi-Hung Lin, Jr-Hung Li, Chang-Shen Lu, Tze-Liang Lee, Chii-Horng Li
  • Publication number: 20200035831
    Abstract: An integrated circuit structure includes a gate stack over a semiconductor substrate, and an opening extending into the semiconductor substrate, wherein the opening is adjacent to the gate stack. A first silicon germanium region is disposed in the opening, wherein the first silicon germanium region has a first germanium percentage. A second silicon germanium region is over the first silicon germanium region. The second silicon germanium region comprises a portion in the opening. The second silicon germanium region has a second germanium percentage greater than the first germanium percentage. A silicon cap substantially free from germanium is over the second silicon germanium region.
    Type: Application
    Filed: October 3, 2019
    Publication date: January 30, 2020
    Inventors: Hsueh-Chang Sung, Kun-Mu Li, Tze-Liang Lee, Chii-Horng Li, Tsz-Mei Kwok
  • Publication number: 20200020784
    Abstract: The present disclosure relates to a method of forming a transistor device. In this method, first and second well regions are formed within a semiconductor substrate. The first and second well regions have first and second etch rates, respectively, which are different from one another. Dopants are selectively implanted into the first well region to alter the first etch rate to make the first etch rate substantially equal to the second etch rate. The first, selectively implanted well region and the second well region are etched to form channel recesses having equal recess depths. An epitaxial growth process is performed to form one or more epitaxial layers within the channel recesses.
    Type: Application
    Filed: September 22, 2019
    Publication date: January 16, 2020
    Inventors: Tsan-Chun Wang, Ziwei Fang, Chii-Horng Li, Tze-Liang Lee, Chao-Cheng Chen, Syun-Ming Jang
  • Publication number: 20200013875
    Abstract: A method includes forming a first and a second dummy gate stack crossing over a semiconductor region, forming an ILD to embed the first and the second dummy gate stacks therein, replacing the first and the second dummy gate stacks with a first and a second replacement gate stack, respectively, performing a first etching process to form a first opening. A portion of the first replacement gate stack and a portion of the second replacement gate stack are removed. The method further includes filling the first opening to form a dielectric isolation region, performing a second etching process to form a second opening, with the ILD being etched, and the dielectric isolation region being exposed to the second opening, forming a contact spacer in the second opening, and filling a contact plug in the second opening. The contact plug is between opposite portions of the contact spacer.
    Type: Application
    Filed: September 19, 2019
    Publication date: January 9, 2020
    Inventors: Ting-Gang Chen, Tai-Chun Huang, Ming-Chang Wen, Shu-Yuan Ku, Fu-Kai Yang, Tze-Liang Lee, Yung-Cheng Lu, Yi-Ting Fu
  • Patent number: 10529553
    Abstract: A method of descumming a dielectric layer is provided. In an embodiment the dielectric layer is deposited over a substrate, and a photoresist is applied, exposed, and developed after the photoresist has been applied. Once the pattern of the photoresist is transferred to the underlying dielectric layer, a descumming process is performed, wherein the descumming process utilizes a mixture of a carbon-containing precursor, a descumming precursor, and a carrier gas. The mixture is ignited into a treatment plasma, and the treatment plasma is applied to the dielectric layer in order to descum the dielectric layer.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: January 7, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wan-Yi Kao, Kuang-Yuan Hsu, Tze-Liang Lee