Patents by Inventor Tzu-Yang Lin

Tzu-Yang Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200124971
    Abstract: The present disclosure provides NTD developers and corresponding lithography techniques that can overcome resolution, line edge roughness (LER), and sensitivity (RLS) tradeoff barriers particular to extreme ultraviolet (EUV) technologies, thereby achieving high patterning fidelity for advanced technology nodes. An exemplary lithography method includes forming a negative tone resist layer over a workpiece; exposing the negative tone resist layer to EUV radiation; and removing an unexposed portion of the negative tone resist layer in a negative tone developer, thereby forming a patterned negative tone resist layer. The negative tone developer includes an organic solvent having a log P value greater than 1.82. The organic solvent is an ester acetate derivative represented by R1COOR2. R1 and R2 are hydrocarbon chains having four or less carbon atoms. In some implementations, R1, R2, or both R1 and R2 are propyl functional groups, such as n-propyl, isopropyl, or 2-methylpropyl.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Inventors: Chen-Yu Liu, Wei-Han Lai, Tzu-Yang Lin, Ming-Hui Weng, Ching-Yu Chang, Chin-Hsiang Lin
  • Publication number: 20200126849
    Abstract: A method for forming openings in an underlayer includes: forming a photoresist layer on an underlayer formed on a substrate; exposing the photoresist layer; forming photoresist patterns by developing the exposed photoresist layer, the photoresist patterns covering regions of the underlayer in which the openings are to be formed; forming a liquid layer over the photoresist patterns; after forming the liquid layer, performing a baking process so as to convert the liquid layer to an organic layer in a solid form; performing an etching back process to remove a portion of the organic layer on a level above the photoresist patterns; removing the photoresist patterns, so as to expose portions of the underlayer by the remaining portion of the organic layer; forming the openings in the underlayer by using the remaining portion of the organic layer as an etching mask; and removing the remaining portion of the organic layer.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Inventors: Tzu-Yang LIN, Cheng-Han WU, Ching-Yu CHANG, Chin-Hsiang LIN
  • Patent number: 10615313
    Abstract: A display device including a backplane, a plurality of light-emitting devices, a first distributed Bragg reflector layer and a second distributed Bragg reflector layer is provided. The light-emitting devices are disposed on the backplane. The first distributed Bragg reflector layer is disposed between the backplane and the light-emitting devices. The light-emitting devices are disposed between the first distributed Bragg reflector layer and the second distributed Bragg reflector layer. A projected area of the first distributed Bragg reflector layer on the backplane is larger than a projected area of one of the light-emitting devices on the backplane or a projected area of the second distributed Bragg reflector layer on the backplane is larger than a projected area of one light-emitting device on the backplane.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: April 7, 2020
    Assignee: PlayNitride Inc.
    Inventors: Yun-Li Li, Yu-Hung Lai, Tzu-Yang Lin
  • Publication number: 20200098558
    Abstract: A method is provided including forming a first layer over a substrate and forming an adhesion layer over the first layer. The adhesion layer has a composition including an epoxy group. A photoresist layer is formed directly on the adhesion layer. A portion of the photoresist layer is exposed to a radiation source. The composition of the adhesion layer and the exposed portion of the photoresist layer cross-link using the epoxy group. Thee photoresist layer is then developed (e.g., by a negative tone developer) to form a photoresist pattern feature, which may overlie the formed cross-linked region.
    Type: Application
    Filed: September 21, 2018
    Publication date: March 26, 2020
    Inventors: Chen-Yu LIU, Tzu-Yang LIN, Ya-Ching CHANG, Ching-Yu CHANG, Chin-Hsiang LIN
  • Patent number: 10593658
    Abstract: A method of forming a light emitting device is provided. A carrier with a plurality of buffer pads and a plurality of light emitting diode chips is provided, wherein the buffer pads are disposed between the carrier and the light emitting diode chips and are with Young's modulus of 2˜10 GPa. The carrier is positioned over a receiving substrate. A thermal bonding process is performed to electrically connect the light emitting diode chips to the receiving substrate, and wherein the buffer pads and the receiving substrate are located at opposite sides of each light emitting diode chip.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: March 17, 2020
    Assignee: PlayNitride Inc.
    Inventors: Tzu-Yang Lin, Yu-Hung Lai, Yu-Yun Lo
  • Publication number: 20200075805
    Abstract: A micro light-emitting diode chip includes an epitaxial structure, a first electrode, and a second electrode. The epitaxial structure includes a first type doped semiconductor layer, a light emitting layer, and a second type doped semiconductor layer, and the epitaxial structure further includes a first surface, a side surface and a second surface opposite to the first surface. The side surface of the epitaxial structure connects to an outer edge of the first surface and an outer edge of the second surface. The first electrode is disposed on the first surface, and is electrically connected to the first type doped semiconductor layer and contacts the first type doped semiconductor layer on a portion of the first surface. The second electrode is disposed on and surrounds the side surface, and electrically connected to the second type doped semiconductor layer, and directly contacts the second type doped semiconductor layer on a portion of the side surface.
    Type: Application
    Filed: November 7, 2019
    Publication date: March 5, 2020
    Applicant: PlayNitride Inc.
    Inventors: Yu-Hung Lai, Yu-Yun Lo, Tzu-Yang Lin
  • Patent number: 10566383
    Abstract: A light emitting diode display includes a plurality of display units and a plurality of auxiliary display units. The display units are arranged in an array and connected to each other. Each of the display units has a device arrangement region, a peripheral region surrounding the device arrangement region, and a plurality of first light emitting devices disposed on the device arrangement region and arranged in an array. The auxiliary display units are disposed on the peripheral regions of the display units. Each of the auxiliary display units includes an auxiliary substrate and a plurality of second light emitting devices arranged in an array. The second light emitting devices are disposed on the auxiliary substrate and located at a level different from a level of the first light emitting devices. Each of the auxiliary substrates is across adjacent two of the display units.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: February 18, 2020
    Assignee: PlayNitride Inc.
    Inventors: Yun-Li Li, Tzu-Yang Lin, Pei-Hsin Chen
  • Publication number: 20200035749
    Abstract: A micro LED display panel includes a display area, a plurality of micro light-emitting elements and a plurality of micro control elements. The plurality of micro light-emitting elements is disposed in the display area and include a plurality of first color micro LEDs and a plurality of second color micro LEDs. A light wavelength of each of the first color micro LEDs is different from a light wavelength of each of the second color micro LEDs. The plurality of micro control elements is disposed in the display area, and include a plurality of first color micro circuit-chips and a plurality of second color micro circuit-chips. The plurality of first color micro circuit-chips control the plurality of first color micro LEDs, and the plurality of second color micro circuit-chips control the plurality of second color micro LEDs.
    Type: Application
    Filed: December 4, 2018
    Publication date: January 30, 2020
    Applicant: PIXELED DISPLAY CO., LTD.
    Inventors: Pei-Hsin CHEN, Yi-Chun SHIH, Yi-Ching CHEN, Ying-Tsang LIU, Yu-Chu LI, Tzu-Yang LIN, Yu-Hung LAI
  • Patent number: 10520820
    Abstract: The present disclosure provides NTD developers and corresponding lithography techniques that can overcome resolution, line edge roughness (LER), and sensitivity (RLS) tradeoff barriers particular to extreme ultraviolet (EUV) technologies, thereby achieving high patterning fidelity for advanced technology nodes. An exemplary lithography method includes forming a negative tone resist layer over a workpiece; exposing the negative tone resist layer to EUV radiation; and removing an unexposed portion of the negative tone resist layer in a negative tone developer, thereby forming a patterned negative tone resist layer. The negative tone developer includes an organic solvent having a log P value greater than 1.82. The organic solvent is an ester acetate derivative represented by R1COOR2. R1 and R2 are hydrocarbon chains having four or less carbon atoms. In some implementations, R1, R2, or both R1 and R2 are propyl functional groups, such as n-propyl, isopropyl, or 2-methylpropyl.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: December 31, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chen-Yu Liu, Wei-Han Lai, Tzu-Yang Lin, Ming-Hui Weng, Ching-Yu Chang, Chin-Hsiang Lin
  • Patent number: 10522712
    Abstract: A micro light-emitting diode chip includes an epitaxial structure, a first electrode, and a second electrode. The epitaxial structure includes a first type doped semiconductor layer, a light emitting layer, and a second type doped semiconductor layer, and the epitaxial structure further includes a first surface, side surface and a second surface opposite to the first surface. The first electrode is disposed on the first surface, and is electrically connected to the first type doped semiconductor layer and contacted the first type doped semiconductor layer on a portion of the first surface. The second electrode is disposed on the first surface and the side surface, and is electrically connected to the second type doped semiconductor layer and contacted the second type doped semiconductor layer on a portion of the side surface. A length of a diagonal of the micro light-emitting diode chip is greater than 1 micrometer and is less than or equal to 140 micrometers.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: December 31, 2019
    Assignee: PlayNitride Inc.
    Inventors: Yu-Hung Lai, Yu-Yun Lo, Tzu-Yang Lin
  • Patent number: 10522520
    Abstract: A micro-LED display panel including a substrate, a plurality of micro-LEDs, and a plurality of reinforced structures is provided. The micro-LEDs are disposed at a side of the substrate, wherein each of the micro-LEDs comprises an epitaxial layer and an electrode layer electrically connected to the epitaxial layer, and the electrode layer are located between the epitaxial layers and the substrate. Each of the micro-LEDs is electrically connected to the substrate through the corresponding electrode layer. Each of electrode layers includes a first electrode and a second electrode. The reinforced structures are disposed between the micro-LEDs and the substrate respectively, and each of the reinforced structures is located between the corresponding the first electrode and the second electrode. A Young's modulus of each of reinforced structures is smaller than a Young's modulus of the corresponding electrode layer.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: December 31, 2019
    Assignee: PixeLED Display CO., LTD.
    Inventors: Ying-Tsang Liu, Yu-Chu Li, Pei-Hsin Chen, Yi-Ching Chen, Tzu-Yang Lin, Yu-Hung Lai
  • Patent number: 10515847
    Abstract: A method for forming openings in an underlayer includes: forming a photoresist layer on an underlayer formed on a substrate; exposing the photoresist layer; forming photoresist patterns by developing the exposed photoresist layer, the photoresist patterns covering regions of the underlayer in which the openings are to be formed; forming a liquid layer over the photoresist patterns; after forming the liquid layer, performing a baking process so as to convert the liquid layer to an organic layer in a solid form; performing an etching back process to remove a portion of the organic layer on a level above the photoresist patterns; removing the photoresist patterns, so as to expose portions of the underlayer by the remaining portion of the organic layer; forming the openings in the underlayer by using the remaining portion of the organic layer as an etching mask; and removing the remaining portion of the organic layer.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: December 24, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tzu-Yang Lin, Cheng-Han Wu, Ching-Yu Chang, Chin-Hsiang Lin
  • Publication number: 20190378452
    Abstract: A display apparatus includes a driving substrate and a plurality of micro light-emitting devices (LEDs). The driving substrate has a plurality of pixel regions. The plurality micro LEDs are disposed in in each of the pixel regions and electrically connected to the driving substrate. Orthogonal projection areas of the micro LEDs in each of the pixel regions on the driving substrate are equal. At least two micro LEDs in each of the pixel regions have different effective light-emitting areas.
    Type: Application
    Filed: June 4, 2019
    Publication date: December 12, 2019
    Applicant: PlayNitride Display Co., Ltd.
    Inventors: Tzu-Yang Lin, Yu-Hung Lai, Pei-Hsin Chen, Yi-Chun Shih, Yi-Ching Chen, Yu-Chu Li, Ying-Tsang Liu
  • Patent number: 10476043
    Abstract: A display including a back plate, a plurality of light emitting devices and a plurality of compensating light emitting devices is provided. The back plate has a plurality of pixels and at least one compensated region. The compensated region includes some of the pixels. The light emitting devices are arranged in all the pixels on the back plate. The compensated light emitting devices are disposed on the back plate and located in each pixel in the compensated region respectively. At least one of the pixels in the compensated region is dead pixel. Besides, a repair method of the display is also provided.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: November 12, 2019
    Assignee: PlayNitride Inc.
    Inventors: Yu-Hung Lai, Yun-Li Li, Tzu-Yang Lin
  • Publication number: 20190326143
    Abstract: A transfer substrate is configured to transfer a plurality of micro components from a first substrate to a second substrate. The transfer substrate comprises a base and a plurality of transfer heads. The base includes an upper surface. The plurality of transfer heads is disposed on the upper surface of the base, wherein each transfer head includes a first surface and a second surface opposite to each other and the transfer heads contact the base with the first surfaces thereof. A plurality of adhesion lumps is separated from each other, wherein each adhesion lump is disposed on the second surface of one of the transfer heads. A CTE of the base is different from CTEs of the transfer heads.
    Type: Application
    Filed: April 17, 2019
    Publication date: October 24, 2019
    Applicant: PLAYNITRIDE INC.
    Inventors: Yu-Hung LAI, Tzu-Yang LIN, Yun-Li LI
  • Patent number: 10431569
    Abstract: A method of transferring micro devices is provided. A carrier substrate including a buffer layer and a plurality of micro devices is provided. The buffer layer is located between the carrier substrate and the micro devices. The micro devices are separated from one another and positioned on the carrier substrate through the buffer layer. A receiving substrate contacts the micro devices disposed on the carrier substrate. A temperature of at least one of the carrier substrate and the receiving substrate is changed, so that at least a portion of the micro devices are released from the carrier substrate and transferred onto the receiving substrate. A number of the at least a portion of the micro devices is between 1000 and 2000000.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: October 1, 2019
    Assignee: PlayNitride Inc.
    Inventors: Yun-Li Li, Tzu-Yang Lin, Yu-Hung Lai, Pei-Hsin Chen
  • Publication number: 20190296188
    Abstract: A ?LED chip having at least two light-emitting regions and including an epitaxial structure layer, a first-type electrode and at least two second-type electrodes is provided. The epitaxial structure layer includes a first-type semiconductor layer, at least two light-emitting layers and at least two second-type semiconductor layers. The light-emitting layers are respectively located in the light-emitting regions, one of the light-emitting layers has a first area, and the other light-emitting layer has a second area. A ratio of the first area to the second area is between 1.5 and 3, and a difference in current densities respectively passing through the at least two light-emitting regions is less than 10%. The light-emitting layers are located between the first-type semiconductor layer and the second-type semiconductor layers. The first-type electrode is electrically connected to the first-type semiconductor layer.
    Type: Application
    Filed: June 12, 2019
    Publication date: September 26, 2019
    Applicant: PlayNitride Display Co., Ltd.
    Inventors: Yu-Hung Lai, Yu-Yun Lo, Tzu-Yang Lin, Yun-Li Li
  • Patent number: 10424615
    Abstract: A display panel including a backplane, a first bonding layer, a plurality of micro light-emitting diodes, a first insulation layer, and a second bonding layer is provided. The first bonding layer is disposed on the backplane. The micro light-emitting diodes are disposed on the first bonding layer and are electrically connected to the first bonding layer. The first insulation layer is located between any adjacent two of the micro light-emitting diodes. The first insulation layer has a concave-convex surface. The second bonding layer is disposed on the micro light-emitting diodes and the first insulation layer and is electrically connected to the micro light-emitting diodes. A micro light-emitting diode apparatus including a substrate, a plurality of micro light-emitting diodes, and a first insulation layer is provided. The first insulation layer is located between any adjacent two of the micro light-emitting diodes. The first insulation layer has a concave-convex surface.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: September 24, 2019
    Assignee: PlayNitride Inc.
    Inventors: Chih-Ling Wu, Yu-Hung Lai, Yi-Min Su, Yu-Yun Lo, Tzu-Yang Lin
  • Publication number: 20190288245
    Abstract: A display including a back plate, a plurality of light emitting devices and a plurality of compensating light emitting devices is provided. The back plate has a plurality of pixels and at least one compensated region. The compensated region includes some of the pixels. The light emitting devices are arranged in all the pixels on the back plate. The compensated light emitting devices are disposed on the back plate and located in each pixel in the compensated region respectively. At least one of the pixels in the compensated region is dead pixel. Besides, a repair method of the display is also provided.
    Type: Application
    Filed: June 5, 2019
    Publication date: September 19, 2019
    Applicant: PlayNitride Inc.
    Inventors: Yu-Hung Lai, Yun-Li Li, Tzu-Yang Lin
  • Patent number: 10410577
    Abstract: A display panel including a backplane and a plurality of micro LEDs is provided. The backplane includes a plurality of sub-pixels. Each of the sub-pixels has N sets of bonding pad. Each set of bonding pads includes a first electrical pad and X second electrical pads. N is an integer of 1˜3, X is an integer of 2˜4. The micro LEDs are respectively disposed in the sub-pixels, and the micro LED is electrically connected to one corresponding set of bonding pads of the N bonding pad sets. A first electrical carrier and a second electrical carrier are provided by the backplane to each of the micro LEDs through the one corresponding set of bonding pads.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: September 10, 2019
    Assignee: PlayNitride Inc.
    Inventors: Yu-Hung Lai, Tzu-Yang Lin, Yun-Li Li, Yu-Yun Lo