Patents by Inventor Vijay Narayanan

Vijay Narayanan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200263620
    Abstract: A method is presented for facilitating oxygen vacancy generation in a resistive random access memory (RRAM) device. The method includes forming a RRAM stack having a first electrode and at least one sacrificial layer, encapsulating the RRAM stack with a dielectric layer, constructing a via resulting in removal of the at least one sacrificial layer of the RRAM stack, the via extending to a high-k dielectric layer of the RRAM stack, and forming a second electrode in the via such that the second electrode extends laterally into cavities defined by the removal of the at least one sacrificial layer.
    Type: Application
    Filed: May 4, 2020
    Publication date: August 20, 2020
    Inventors: Takashi Ando, Hiroyuki Miyazoe, Seyoung Kim, Vijay Narayanan
  • Patent number: 10727407
    Abstract: A method is presented for facilitating oxygen vacancy generation in a resistive random access memory (RRAM) device. The method includes forming a RRAM stack having a first electrode and at least one sacrificial layer, encapsulating the RRAM stack with a dielectric layer, constructing a via resulting in removal of the at least one sacrificial layer of the RRAM stack, the via extending to a high-k dielectric layer of the RRAM stack, and forming a second electrode in the via such that the second electrode extends laterally into cavities defined by the removal of the at least one sacrificial layer.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: July 28, 2020
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Hiroyuki Miyazoe, Seyoung Kim, Vijay Narayanan
  • Publication number: 20200203607
    Abstract: A resistive random access memory (RERAM) apparatus and method for forming the apparatus are provided. Oxygen content control in the RERAM is provided. To provide oxygen content control, a via to an electrode of the RERAM is formed utilizing an oxygen-free plasma etch step. In one embodiment, the dielectric within which the via is formed is silicon nitride (SiN). In exemplary embodiments, the plasma chemistry is a hydrofluorocarbon (CxHyFz)-based plasma chemistry or a fluorocarbon (CxFy)-based plasma chemistry. In one embodiment, the resistive layer of the RERAM is a metal oxide. In another embodiment, the oxygen concentrations in the electrode of the RERAM under the via and outside the via are the same after formation of the via.
    Type: Application
    Filed: April 16, 2019
    Publication date: June 25, 2020
    Inventors: Devi Koty, Qingyun Yang, Hiroyuki Miyazoe, Takashi Ando, Eduard Cartier, Vijay Narayanan, Sebastian Ulrich Englemann
  • Patent number: 10692985
    Abstract: A starting structure for forming a gate-all-around field effect transistor (FET) and a method of fabricating the gate-all-around FET. The method includes forming a stack of silicon nanosheets above a substrate forming an interfacial layer over the nanosheets depositing a high-k dielectric layer conformally on the interfacial layer. The method also includes depositing a layer of silicon nitride (SiN) above the high-k dielectric layer and performing reliability anneal after depositing the layer of SiN to crystalize the high-k dielectric layer.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: June 23, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nicolas J. Loubet, Sanjay C. Mehta, Vijay Narayanan, Muthumanickam Sankarapandian
  • Publication number: 20200190014
    Abstract: The present invention relates to 2,3,7-Trimethyloct-6-enyl acetate and 3,7-dimethyl-2-methylene-oct-6-enyl acetate and derivatives thereof and their use as aroma chemicals.
    Type: Application
    Filed: May 4, 2018
    Publication date: June 18, 2020
    Inventors: Volker HICKMANN, Stefan RUEDENAUER, Ralf PELZER, Vijay Narayanan SWAMINATHAN, Shrirang HINDALEKAR, Nitin GUPTE, Sadanand ARDEKAR, Mileen KADAM
  • Patent number: 10686039
    Abstract: Artificial synaptic devices with a HfO2-based ferroelectric layer that can be implemented in the CMOS front-end are provided. In one aspect, a method of forming a FET device is provided. The method includes: forming a shallow STI region in a substrate separating a first active area of the substrate from a second active area of the substrate; forming at least one FeFET on the substrate in the first active area having a ferroelectric material including a HfO2-based material; and forming at least one logic FET alongside the at least one FeFET on the substrate in the second active area, wherein the at least one logic FET has a gate dielectric including the HfO2-based material. A FET device formed by the present techniques is also provided.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: June 16, 2020
    Assignee: International Business Machines Corporation
    Inventors: Martin M. Frank, Takashi Ando, Xiao Sun, Jin Ping Han, Vijay Narayanan
  • Patent number: 10686040
    Abstract: Artificial synaptic devices with a HfO2-based ferroelectric layer that can be implemented in the CMOS front-end are provided. In one aspect, a method of forming a FET device is provided. The method includes: forming a shallow STI region in a substrate separating a first active area of the substrate from a second active area of the substrate; forming at least one FeFET on the substrate in the first active area having a ferroelectric material including a HfO2-based material; and forming at least one logic FET alongside the at least one FeFET on the substrate in the second active area, wherein the at least one logic FET has a gate dielectric including the HfO2-based material. A FET device formed by the present techniques is also provided.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: June 16, 2020
    Assignee: International Business Machines Corporation
    Inventors: Martin M. Frank, Takashi Ando, Xiao Sun, Jin Ping Han, Vijay Narayanan
  • Patent number: 10672671
    Abstract: Semiconductor devices and methods of forming the same include forming a first channel region on a first semiconductor region. A second channel region is formed on a second semiconductor region. The second semiconductor region is formed from a semiconductor material that is different from a semiconductor material of the first semiconductor region. A semiconductor cap is formed on one or more of the first and second channel regions. A gate dielectric layer is formed over the nitrogen-containing layer. A gate is formed on the gate dielectric.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: June 2, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Martin M. Frank, Renee T. Mo, Vijay Narayanan
  • Patent number: 10672881
    Abstract: A method is presented for forming a semiconductor device. The method includes forming an oxygen containing interfacial layer on a semiconductor substrate, forming a hafnium oxide layer on the interfacial layer, the hafnium oxide layer crystallizing to a non-centrosymmetric phase in a final structure, forming a first electrode containing a scavenging metal, which reduces a thickness of the interfacial layer via an oxygen scavenging reaction in the final structure, on the hafnium oxide layer, and forming a second electrode on the first electrode.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: June 2, 2020
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Martin M. Frank, Vijay Narayanan
  • Patent number: 10636792
    Abstract: A method of fabricating a semiconductor structure having multiple defined threshold voltages includes: forming multiple field-effect transistor (FET) devices in the semiconductor structure, each of the FET devices including a channel and a gate stack formed of one of at least two different work function metals, the gate stack being formed proximate the channel; and varying a band-gap of the channel in each of at least a subset of the FET devices by controlling a percentage of one or more compositions of a material forming the channel; wherein a threshold voltage of each of the FET devices is configured as a function of a type of work function metal forming the gate stack and the percentage of one or more compositions of the material forming the channel.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: April 28, 2020
    Assignee: International Business Machines Corporation
    Inventors: Hemanth Jagannathan, Vijay Narayanan
  • Publication number: 20200118889
    Abstract: Embodiments of the invention include a wafer having gate stacks over channel fins. The wafer includes a first channel fin in an n-type region of a substrate, a second channel fin in a p-type region of the substrate, and a gate dielectric over the substrate and the first and second channel fins. A work function metal stack is over the gate dielectric, the first channel fin in the n-type region, and the second channel fin in the p-type region. The work function metal stack over the gate dielectric and the first channel fin in the n-type region forms a first work function metal stack. The work function metal stack over the gate dielectric and the second fin in the p-type region forms a second work function metal stack. The first work function metal stack includes a shared layer of work function metal shared with the second work function metal stack.
    Type: Application
    Filed: November 22, 2019
    Publication date: April 16, 2020
    Inventors: Ruqiang Bao, Unoh Kwon, Vijay Narayanan
  • Publication number: 20200118888
    Abstract: Embodiments of the invention are directed to a method that includes forming a first channel fin in an n-type region of a substrate, forming a second channel fin in a p-type region of the substrate, and depositing a gate dielectric over the substrate and the first and second channel fins. A work function metal stack is deposited over the gate dielectric, the first fin in the n-type region, and the second fin in the p-type region. The work function metal stack over the gate dielectric and the first fin in the n-type region forms a first work function metal stack. The work function metal stack over the gate dielectric and the second fin in the p-type region forms a second work function metal stack. The first work function metal stack includes at least one shared layer of work function metal that is shared with the second work function metal stack.
    Type: Application
    Filed: October 11, 2018
    Publication date: April 16, 2020
    Inventors: Ruqiang Bao, Unoh Kwon, Vijay Narayanan
  • Patent number: 10615250
    Abstract: A tapered metal nitride structure having a gentle sloping (i.e., tapered) sidewall is provided that includes an oxygen rich metal nitride portion located between each metal nitride portion of a stack of metal nitride portions. The structure is formed by incorporating/introducing oxygen into an upper portion of a first metal nitride layer to form an oxygen rich metal nitride surface layer. A second nitride is then formed atop the oxygen rich metal nitride surface layer. The steps of oxygen incorporation/addition and nitride layer formation may be repeated any number of times. An etch mask is then provided and thereafter a sputter etch is performed to provide the tapered metal nitride structure. The tapered metal nitride structure may be used as an electrode in a semiconductor device.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: April 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: Martin M. Frank, Hiroyuki Miyazoe, Vijay Narayanan
  • Patent number: 10615043
    Abstract: Methods are provided to form pure silicon oxide layers on silicon-germanium (SiGe) layers, as well as an FET device having a pure silicon oxide interfacial layer of a metal gate structure formed on a SiGe channel layer of the FET device. For example, a method comprises growing a first silicon oxide layer on a surface of a SiGe layer using a first oxynitridation process, wherein the first silicon oxide layer comprises nitrogen. The first silicon oxide layer is removed, and a second silicon oxide layer is grown on the surface of the SiGe layer using a second oxynitridation process, which is substantially the same as the first oxynitridation process, wherein the second silicon oxide layer is substantially devoid of germanium oxide and nitrogen. For example, the first silicon oxide layer comprises a SiON layer and the second silicon oxide layer comprises a pure silicon dioxide layer.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: April 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Pouya Hashemi, Hemanth Jagannathan, Choonghyun Lee, Vijay Narayanan
  • Patent number: 10593600
    Abstract: Semiconductor devices and methods of forming the same include forming a first channel region on a first semiconductor region. A second channel region is formed on a second semiconductor region. The second semiconductor region is formed from a semiconductor material that is different from a semiconductor material of the first semiconductor region. A semiconductor cap is formed on one or more of the first and second channel regions. A gate dielectric layer is formed over the nitrogen-containing layer. A gate is formed on the gate dielectric.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: March 17, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Martin M. Frank, Renee T. Mo, Vijay Narayanan
  • Publication number: 20200075860
    Abstract: Embodiments of the invention are directed to a fabrication method that includes forming a dielectric region of a wafer, forming a bottom contact embedded within the dielectric region such that a top surface of the bottom contact is exposed, and forming a dummy resistive switching element over the top surface of the bottom electrode. Portions of the dummy resistive switching element are exposed to at least one oxide source. The dummy resistive switching element is replaced with a resistive switching element stack.
    Type: Application
    Filed: September 5, 2018
    Publication date: March 5, 2020
    Inventors: Takashi Ando, Hiroyuki Miyazoe, Seyoung Kim, Vijay Narayanan
  • Publication number: 20200066859
    Abstract: A gate structure for effective work function adjustments of semiconductor devices that includes a gate dielectric on a channel region of a semiconductor device; a first metal nitride in direct contact with the gate dielectric; a conformal carbide of Aluminum material layer having an aluminum content greater than 30 atomic wt. %; and a second metal nitride layer in direct contact with the conformal aluminum (Al) and carbon (C) containing material layer. The conformal carbide of aluminum (Al) layer includes aluminum carbide, or Al4C3, yielding an aluminum (Al) content up to 57 atomic % (at. %) and work function setting from 3.9 eV to 5.0 eV at thicknesses below 25 ?. Such structures can present metal gate length scaling and resistance benefit below 25 nm compared to state of the art work function electrodes.
    Type: Application
    Filed: October 30, 2019
    Publication date: February 27, 2020
    Inventors: Takashi Ando, Ruqiang Bao, Masanobu Hatanaka, Vijay Narayanan, Yohei Ogawa, John Rozen
  • Publication number: 20200066724
    Abstract: Semiconductor devices and methods of making the same include forming a first channel region on a first semiconductor region. A second channel region is formed on a second semiconductor region, the second semiconductor region being formed from a semiconductor material that is different from a semiconductor material of the first semiconductor region. A gate dielectric layer is formed over one or more of the first and second channel regions. A nitrogen-containing layer is formed on the gate dielectric layer. A gate is formed on the gate dielectric.
    Type: Application
    Filed: November 1, 2019
    Publication date: February 27, 2020
    Inventors: Takashi Ando, Martin M. Frank, Renee T. Mo, Vijay Narayanan, John Rozen
  • Publication number: 20200052207
    Abstract: A method is presented for facilitating oxygen vacancy generation in a resistive random access memory (RRAM) device. The method includes forming a RRAM stack having a first electrode and at least one sacrificial layer, encapsulating the RRAM stack with a dielectric layer, constructing a via resulting in removal of the at least one sacrificial layer of the RRAM stack, the via extending to a high-k dielectric layer of the RRAM stack, and forming a second electrode in the via such that the second electrode extends laterally into cavities defined by the removal of the at least one sacrificial layer.
    Type: Application
    Filed: August 8, 2018
    Publication date: February 13, 2020
    Inventors: Takashi Ando, Hiroyuki Miyazoe, Seyoung Kim, Vijay Narayanan
  • Patent number: 10553584
    Abstract: Semiconductor devices and methods of making the same include forming a first channel region on a first semiconductor region. A second channel region is formed on a second semiconductor region, the second semiconductor region being formed from a semiconductor material that is different from a semiconductor material of the first semiconductor region. A gate dielectric layer is formed over one or more of the first and second channel regions. A nitrogen-containing layer is formed on the gate dielectric layer. A gate is formed on the gate dielectric.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: February 4, 2020
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Martin M. Frank, Renee T. Mo, Vijay Narayanan, John Rozen