Patents by Inventor Vijay Narayanan

Vijay Narayanan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190252499
    Abstract: Artificial synaptic devices with a HfO2-based ferroelectric layer that can be implemented in the CMOS front-end are provided. In one aspect, a method of forming a FET device is provided. The method includes: forming a shallow STI region in a substrate separating a first active area of the substrate from a second active area of the substrate; forming at least one FeFET on the substrate in the first active area having a ferroelectric material including a HfO2-based material; and forming at least one logic FET alongside the at least one FeFET on the substrate in the second active area, wherein the at least one logic FET has a gate dielectric including the HfO2-based material. A FET device formed by the present techniques is also provided.
    Type: Application
    Filed: April 25, 2019
    Publication date: August 15, 2019
    Inventors: Martin M. Frank, Takashi Ando, Xiao Sun, Jin Ping Han, Vijay Narayanan
  • Publication number: 20190252500
    Abstract: Artificial synaptic devices with a HfO2-based ferroelectric layer that can be implemented in the CMOS front-end are provided. In one aspect, a method of forming a FET device is provided. The method includes: forming a shallow STI region in a substrate separating a first active area of the substrate from a second active area of the substrate; forming at least one FeFET on the substrate in the first active area having a ferroelectric material including a HfO2-based material; and forming at least one logic FET alongside the at least one FeFET on the substrate in the second active area, wherein the at least one logic FET has a gate dielectric including the HfO2-based material. A FET device formed by the present techniques is also provided.
    Type: Application
    Filed: April 25, 2019
    Publication date: August 15, 2019
    Inventors: Martin M. Frank, Takashi Ando, Xiao Sun, Jin Ping Han, Vijay Narayanan
  • Patent number: 10381431
    Abstract: Artificial synaptic devices with an HfO2-based ferroelectric layer that can be implemented in the CMOS back-end are provided. In one aspect, an artificial synapse element is provided. The artificial synapse element includes: a bottom electrode; a ferroelectric layer disposed on the bottom electrode, wherein the ferroelectric layer includes an HfO2-based material that crystallizes in a ferroelectric phase at a temperature of less than or equal to about 400° C.; and a top electrode disposed on the bottom electrode. An artificial synaptic device including the present artificial synapse element and methods for formation thereof are also provided.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: August 13, 2019
    Assignee: International Business Machines Corporation
    Inventors: Martin M. Frank, Takashi Ando, Xiao Sun, Jin Ping Han, Vijay Narayanan
  • Publication number: 20190245056
    Abstract: A circuit and method relating to a ferroelectric region free of extended grain boundaries through a thickness of ferroelectric film. The circuit includes an interlayer insulating film disposed on a semiconductor wafer; a first conductive film disposed on the interlayer insulating film; a ferroelectric film disposed on the first conductive film; a second conductive film disposed on the ferroelectric film; and a ferroelectric region patterned from the ferroelectric film, wherein the ferroelectric region is free of extended grain boundaries through a thickness of the ferroelectric film. The method includes depositing an interlayer insulating film over a semiconductor wafer; depositing a first conductive film over the interlayer insulating film; depositing a ferroelectric film over the first conductive film; depositing a second conductive film over the ferroelectric film; and forming a capacitor by patterning the first conductive film, the second conductive film, and the ferroelectric film.
    Type: Application
    Filed: February 2, 2018
    Publication date: August 8, 2019
    Inventors: John Bruley, Eduard Albert Cartier, Catherine Dubourdieu, Martin Michael Frank, Lucie Mazet, Vijay Narayanan
  • Patent number: 10361281
    Abstract: A method of fabricating a replacement gate stack for a semiconductor device includes the following steps after removal of a dummy gate: growing a high-k dielectric layer over the area vacated by the dummy gate; depositing a thin metal layer over the high-k dielectric layer; depositing a sacrificial layer over the thin metal layer; performing a first rapid thermal anneal; removing the sacrificial layer; and depositing a metal layer of low resistivity metal for gap fill.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: July 23, 2019
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC.
    Inventors: Takashi Ando, Eduard A. Cartier, Kisik Choi, Vijay Narayanan
  • Publication number: 20190198500
    Abstract: A semiconductor device is provided and has an n-channel field effect transistor (nFET) bottom junction and a p-channel field effect transistor (pFET) bottom junction. The semiconductor device includes first and second fin formations operably disposed in the nFET and pFET bottom junctions, respectively. The semiconductor device can also include an nFET metal gate layer deposited for oxygen absorption onto a high-k dielectric layer provided about the first fin formation in the nFET bottom junction and onto a pFET metal gate layer provided about the second fin formation in the pFET bottom junction. Alternatively, the semiconductor device can include an oxygen scavenging layer deposited onto the pFET metal gate layer about the second fin formation in the pFET bottom junction and, with the pFET metal gate layer deposited onto the nFET metal gate layer about the first fin formation in the nFET bottom junction, onto the pFET metal gate layer in the nFET bottom junction.
    Type: Application
    Filed: March 6, 2019
    Publication date: June 27, 2019
    Inventors: RUQIANG BAO, HEMANTH JAGANNATHAN, PAUL JAMISON, CHOONGHYUN LEE, VIJAY NARAYANAN
  • Patent number: 10332883
    Abstract: A semiconductor device comprises a first semiconductor fin arranged on a substrate, the first semiconductor fin having a first channel region, and a second semiconductor fin arranged on the substrate, the second semiconductor fin having a second channel region. A first gate stack is arranged on the first channel region. The first gate stack comprises a first metal layer arranged on the first channel region, a work function metal layer arranged on the first metal layer, and a work function metal arranged on the work function metal layer. A second gate stack is arranged on the second channel region, the second gate stack comprising a work function metal arranged on the second channel region.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: June 25, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Dechao Guo, Vijay Narayanan
  • Patent number: 10332957
    Abstract: A layered structure including a tri-stack dielectric layer and a plurality of metal layers insulated from each other by the tri-stack dielectric layer. The plurality of metal layers includes a set of first-type metal layers and a set of second-type metal layers. An adjacent pair of the plurality of metal layers includes a first-type metal layer and a second-type metal layer. The tri-stack dielectric layer includes a first tri-stack layer including Al2O3, a second tri-stack layer including HfO2; and a third tri-stack layer including Al2O3.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: June 25, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Eduard A. Cartier, Vijay Narayanan, Adam M. Pyzyna
  • Publication number: 20190189766
    Abstract: A starting structure for forming a gate-all-around field effect transistor (FET) and a method of fabricating the gate-all-around FET. The method includes forming a stack of silicon nanosheets above a substrate forming an interfacial layer over the nanosheets depositing a high-k dielectric layer conformally on the interfacial layer. The method also includes depositing a layer of silicon nitride (SiN) above the high-k dielectric layer and performing reliability anneal after depositing the layer of SiN to crystalize the high-k dielectric layer.
    Type: Application
    Filed: February 22, 2019
    Publication date: June 20, 2019
    Inventors: Nicolas J. Loubet, Sanjay C. Mehta, Vijay Narayanan, Muthumanickam Sankarapandian
  • Patent number: 10319818
    Abstract: Artificial synaptic devices with a HfO2-based ferroelectric layer that can be implemented in the CMOS front-end are provided. In one aspect, a method of forming a FET device is provided. The method includes: forming a shallow STI region in a substrate separating a first active area of the substrate from a second active area of the substrate; forming at least one FeFET on the substrate in the first active area having a ferroelectric material including a HfO2-based material; and forming at least one logic FET alongside the at least one FeFET on the substrate in the second active area, wherein the at least one logic FET has a gate dielectric including the HfO2-based material. A FET device formed by the present techniques is also provided.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: June 11, 2019
    Assignee: International Business Machines Corporation
    Inventors: Martin M. Frank, Takashi Ando, Xiao Sun, Jin Ping Han, Vijay Narayanan
  • Publication number: 20190169108
    Abstract: The invention relates to compounds of formula (A) as defined herein, and esters of the compound of formula (A), and ketones of the compound of formula (A). The invention further relates to a method for preparing compounds of formula (A) and esters of the compound of formula (A), and ketones of the compound of formula (A). The invention further relates to the use of at least one compound selected from compounds of formula (A) and the esters of a compound of formula (A) and the ketones of a compound of formula (A) as aroma chemical.
    Type: Application
    Filed: August 3, 2017
    Publication date: June 6, 2019
    Inventors: VOLKER HICKMANN, Stefan RUEDENAUER, Ralf PELZER, Vijay Narayanan SWAMINATHAN, Shrirang HINDALEKAR, Nitin GUPTE, Sadanand ARDEKAR, Mileen KADAM
  • Patent number: 10312157
    Abstract: A method for fabricating a gate stack of a semiconductor device comprises forming a first dielectric layer over a channel region of the device, forming a first nitride layer over the first dielectric layer, forming a first gate metal layer over the first nitride layer, forming a capping layer over the first gate metal layer, removing portions of the capping layer and the first gate metal layer to expose a portion of the first nitride layer in a p-type field effect transistor (pFET) region of the gate stack, depositing a scavenging layer on the first nitride layer and the capping layer, depositing a second nitride layer on the scavenging layer, and depositing a gate electrode material on the second nitride layer.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: June 4, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Siddarth A. Krishnan, Unoh Kwon, Vijay Narayanan
  • Patent number: 10304936
    Abstract: A starting structure for forming a gate-all-around field effect transistor (FET) and a method of fabricating the gate-all-around FET. The method includes forming a stack of silicon nanosheets above a substrateforming an interfacial layer over the nanosheets depositing a high-k dielectric layer conformally on the interfacial layer. The method also includes depositing a layer of silicon nitride (SiN) above the high-k dielectric layer and performing reliability anneal after depositing the layer of SiN to crystallize the high-k dielectric layer.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: May 28, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nicolas J. Loubet, Sanjay C. Mehta, Vijay Narayanan, Muthumanickam Sankarapandian
  • Patent number: 10297671
    Abstract: A method is presented for forming a nanosheet structure having a uniform threshold voltage (Vt). The method includes forming a conductive barrier surrounding a nanosheet, forming a first work function conducting layer over the conductive barrier layer, and forming a conducting layer adjacent the first work function conducting layer, the conducting layer defining a first region and a second region. The method further includes forming a second work function conducting layer over the second region of the conducting layer to compensate for threshold voltage offset between the first and second regions of the conducting layer.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: May 21, 2019
    Assignee: International Business Machines Corporation
    Inventors: Ruqiang Bao, Hemanth Jagannathan, Paul C. Jamison, ChoongHyun Lee, Vijay Narayanan, Koji Watanabe
  • Patent number: 10297598
    Abstract: A semiconductor device is provided and has an n-channel field effect transistor (nFET) bottom junction and a p-channel field effect transistor (pFET) bottom junction. The semiconductor device includes first and second fin formations operably disposed in the nFET and pFET bottom junctions, respectively. The semiconductor device can also include an nFET metal gate layer deposited for oxygen absorption onto a high-k dielectric layer provided about the first fin formation in the nFET bottom junction and onto a pFET metal gate layer provided about the second fin formation in the pFET bottom junction. Alternatively, the semiconductor device can include an oxygen scavenging layer deposited onto the pFET metal gate layer about the second fin formation in the pFET bottom junction and, with the pFET metal gate layer deposited onto the nFET metal gate layer about the first fin formation in the nFET bottom junction, onto the pFET metal gate layer in the nFET bottom junction.
    Type: Grant
    Filed: January 16, 2017
    Date of Patent: May 21, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruqiang Bao, Hemanth Jagannathan, Paul Jamison, Choonghyun Lee, Vijay Narayanan
  • Patent number: 10283610
    Abstract: A method of forming a gate stack that includes treating a semiconductor substrate with a wet etch chemistry to clean a surface of the semiconductor substrate and form an oxide containing interfacial layer, and converting the oxide containing interfacial layer to a binary alloy oxide based interlayer using a plasma deposition sequence including alternating a metal gas precursor and a nitrogen and/or hydrogen containing plasma. The method of forming the gate stack may further include forming a high-k dielectric layer atop the binary alloy oxide based interlayer.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: May 7, 2019
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, ULVAC, INC.
    Inventors: Vijay Narayanan, Yohei Ogawa, John Rozen
  • Publication number: 20190131418
    Abstract: A gate structure for effective work function adjustments of semiconductor devices that includes a gate dielectric on a channel region of a semiconductor device; a first metal nitride in direct contact with the gate dielectric; a conformal carbide of Aluminum material layer having an aluminum content greater than 30 atomic wt. %; and a second metal nitride layer in direct contact with the conformal aluminum (Al) and carbon (C) containing material layer. The conformal carbide of aluminum (Al) layer includes aluminum carbide, or Al4C3, yielding an aluminum (Al) content up to 57 atomic % (at. %) and work function setting from 3.9 eV to 5.0 eV at thicknesses below 25 ?. Such structures can present metal gate length scaling and resistance benefit below 25 nm compared to state of the art work function electrodes.
    Type: Application
    Filed: October 31, 2017
    Publication date: May 2, 2019
    Inventors: Takashi Ando, Ruqiang Bao, Masanobu Hatanaka, Vijay Narayanan, Yohei Ogawa, John Rozen
  • Publication number: 20190131407
    Abstract: Artificial synaptic devices with a HfO2-based ferroelectric layer that can be implemented in the CMOS front-end are provided. In one aspect, a method of forming a FET device is provided. The method includes: forming a shallow STI region in a substrate separating a first active area of the substrate from a second active area of the substrate; forming at least one FeFET on the substrate in the first active area having a ferroelectric material including a HfO2-based material; and forming at least one logic FET alongside the at least one FeFET on the substrate in the second active area, wherein the at least one logic FET has a gate dielectric including the HfO2-based material. A FET device formed by the present techniques is also provided.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 2, 2019
    Inventors: Martin M. Frank, Takashi Ando, Xiao Sun, Jin Ping Han, Vijay Narayanan
  • Publication number: 20190131383
    Abstract: Artificial synaptic devices with an HfO2-based ferroelectric layer that can be implemented in the CMOS back-end are provided. In one aspect, an artificial synapse element is provided. The artificial synapse element includes: a bottom electrode; a ferroelectric layer disposed on the bottom electrode, wherein the ferroelectric layer includes an HfO2-based material that crystallizes in a ferroelectric phase at a temperature of less than or equal to about 400° C.; and a top electrode disposed on the bottom electrode. An artificial synaptic device including the present artificial synapse element and methods for formation thereof are also provided.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 2, 2019
    Inventors: Martin M. Frank, Takashi Ando, Xiao Sun, Jin Ping Han, Vijay Narayanan
  • Patent number: 10270029
    Abstract: A resistive switching memory stack is provided. The resistive switching memory stack includes a bottom electrode, formed from one or more conductors. The resistive switching memory stack further includes an oxide layer, disposed over the bottom electrode, formed from an Atomic Layer Deposition (ALD) of one or more oxides. The resistive switching memory stack also includes a top electrode, disposed over the oxide layer, formed from the ALD of a plurality of metals into a metal layer stack. An oxygen vacancy concentration of the resistive switching memory stack is controlled by (i) a thickness of the plurality of metals forming the top electrode and (ii) a percentage of a particular one of the plurality of metals in the metal layer stack of the top electrode.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: April 23, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Vijay Narayanan, John Rozen