Patents by Inventor Vladimir Odnoblyudov

Vladimir Odnoblyudov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10256369
    Abstract: Various embodiments of light emitting dies and solid state lighting (“SSL”) devices with light emitting dies, assemblies, and methods of manufacturing are described herein. In one embodiment, a light emitting die includes an SSL structure configured to emit light in response to an applied electrical voltage, a first electrode carried by the SSL structure, and a second electrode spaced apart from the first electrode of the SSL structure. The first and second electrode are configured to receive the applied electrical voltage. Both the first and second electrodes are accessible from the same side of the SSL structure via wirebonding.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: April 9, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Martin F. Schubert, Vladimir Odnoblyudov
  • Patent number: 10249806
    Abstract: A wafer-level process for manufacturing solid state lighting (“SSL”) devices using large-diameter preformed metal substrates is disclosed. A light emitting structure is formed on a growth substrate, and a preformed metal substrate is bonded to the light emitting structure opposite the growth substrate. The preformed metal substrate can be bonded to the light emitting structure via a metal-metal bond, such as a copper-copper bond, or with an inter-metallic compound bond.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: April 2, 2019
    Assignee: Micron Technology, Inc.
    Inventor: Vladimir Odnoblyudov
  • Patent number: 10242970
    Abstract: Discontinuous bonds for semiconductor devices are disclosed herein. A device in accordance with a particular embodiment includes a first substrate and a second substrate, with at least one of the first substrate and the second substrate having a plurality of solid-state transducers. The second substrate can include a plurality of projections and a plurality of intermediate regions and can be bonded to the first substrate with a discontinuous bond. Individual solid-state transducers can be disposed at least partially within corresponding intermediate regions and the discontinuous bond can include bonding material bonding the individual solid-state transducers to blind ends of corresponding intermediate regions. Associated methods and systems of discontinuous bonds for semiconductor devices are disclosed herein.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: March 26, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Scott D. Schellhammer, Vladimir Odnoblyudov, Jeremy S. Frei
  • Patent number: 10230035
    Abstract: Light emitting diode packages as disclosed herein include a monolithic chip including at least a first and a second light emitting diode (LED) that are electrically coupled in series, wherein the first and the second LEDs each include at least one electrical terminal configured to be electrically coupled to a power source. The monolithic chip is mounted onto a connection substrate having first and second landing pads formed from metallic material and electrically isolated from each other. The monolithic chip is mounted to the connection substrate such that the electrical terminal of the first LED is electrically connected to the first landing pad and the electrical terminal of the second LED is electrically connected to the second landing pad. In an example, the monolithic chip includes a third and a fourth LED electrically coupled to each other in series, and electrically coupled to the first and second LEDs in parallel.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: March 12, 2019
    Assignee: Bridgelux, Inc.
    Inventor: Vladimir A. Odnoblyudov
  • Publication number: 20190058100
    Abstract: Solid-state transducers (“SSTs”) and vertical high voltage SSTs having buried contacts are disclosed herein. An SST die in accordance with a particular embodiment can include a transducer structure having a first semiconductor material at a first side of the transducer structure, and a second semiconductor material at a second side of the transducer structure. The SST can further include a plurality of first contacts at the first side and electrically coupled to the first semiconductor material, and a plurality of second contacts extending from the first side to the second semiconductor material and electrically coupled to the second semiconductor material. An interconnect can be formed between at least one first contact and one second contact. The interconnects can be covered with a plurality of package materials.
    Type: Application
    Filed: October 22, 2018
    Publication date: February 21, 2019
    Inventors: Vladimir Odnoblyudov, Martin F. Schubert
  • Patent number: 10211185
    Abstract: An LED CoB structure with the combination use of blue and red LED dies is used to achieve warm white light, with good quantum conversion efficiency at a reasonably low cost. Both the red and blue LED dies are fabricated on transparent substrates. The current density of the LED dies is designed to match the different degradation rate of each type of LED die. The methods used to achieve high efficiency include adjusting the power, wavelength, and/or position of the dies.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: February 19, 2019
    Assignee: BRIDGELUX INC.
    Inventors: Peng Chen, Vladimir Odnoblyudov, Zhengqing Gan
  • Patent number: 10205069
    Abstract: Various aspects of a light emitting apparatus includes a substrate. Various aspects of the light emitting apparatus include a light emitting die arranged on the substrate. The light emitting die includes one or more side walls. Various aspects of the light emitting apparatus include a reflective die attach material extending along the one or more side walls of the light emitting die.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: February 12, 2019
    Assignee: BRIDGELUX INC.
    Inventors: Vladimir Odnoblyudov, Scott West, Cem Basceri, Zhengqing Gan
  • Patent number: 10204778
    Abstract: A method of forming a semiconductor device includes providing an engineered substrate. The engineered substrate includes a polycrystalline ceramic core, a barrier layer encapsulating the polycrystalline ceramic core, a bonding layer coupled to the barrier layer, and a substantially single crystalline silicon layer coupled to the bonding layer. The method further includes forming a Schottky diode coupled to the engineered substrate. The Schottky diode has a top surface and a bottom surface. The bottom surface is coupled to the substantially single crystalline silicon layer. The method further includes forming a Schottky contact coupled to the top surface of the Schottky diode, forming a metal plating coupled to the Schottky contact, removing the engineered substrate to expose the bottom surface of the Schottky diode, and forming an ohmic contact on the bottom surface of the Schottky diode.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: February 12, 2019
    Assignee: Qromis, Inc.
    Inventors: Vladimir Odnoblyudov, Dilip Risbud, Ozgur Aktas
  • Publication number: 20190019924
    Abstract: Wavelength converters, including polarization-enhanced carrier capture converters, for solid state lighting devices, and associated systems and methods are disclosed. A solid state radiative semiconductor structure in accordance with a particular embodiment includes a first region having a first value of a material characteristic and being positioned to receive radiation at a first wavelength. The structure can further include a second region positioned adjacent to the first region to emit radiation at a second wavelength different than the first wavelength. The second region has a second value of the material characteristic that is different than the first value, with the first and second values of the characteristic forming a potential gradient to drive electrons, holes, or both electrons and holes in the radiative structure from the first region to the second region. In a further particular embodiment, the material characteristic includes material polarization.
    Type: Application
    Filed: September 18, 2018
    Publication date: January 17, 2019
    Inventors: Martin F. Schubert, Vladimir Odnoblyudov
  • Patent number: 10181419
    Abstract: A semiconductor diode includes an engineered substrate including a substantially single crystal layer, a buffer layer coupled to the substantially single crystal layer, and a semi-insulating layer coupled to the buffer layer. The semiconductor diode also includes a first N-type gallium nitride layer coupled to the semi-insulating layer and a second N-type gallium nitride layer coupled to the first N-type gallium nitride layer. The first N-type gallium nitride layer has a first doping concentration and the second N-type gallium nitride layer has a second doping concentration less than the first doping concentration. The semiconductor diode further includes a P-type gallium nitride layer coupled to the second N-type gallium nitride layer, an anode contact coupled to the P-type gallium nitride layer, and a cathode contact coupled to a portion of the first N-type gallium nitride layer.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: January 15, 2019
    Assignee: QROMIS, INC.
    Inventors: Vladimir Odnoblyudov, Dilip Risbud, Ozgur Aktas, Cem Basceri
  • Patent number: 10170668
    Abstract: Solid state lighting (“SSL”) devices with improved current spreading and light extraction and associated methods are disclosed herein. In one embodiment, an SSL device includes a solid state emitter (“SSE”) that has a first semiconductor material, a second semiconductor material spaced apart from the first semiconductor material, and an active region between the first and second semiconductor materials. The SSL device can further include a first contact on the first semiconductor material and a second contact on the second semiconductor material and opposite the first contact. The second contact can include one ore more interconnected fingers. Additionally, the SSL device can include an insulative feature extending from the first contact at least partially into the first semiconductor material. The insulative feature can be substantially aligned with the second contact.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: January 1, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Vladimir Odnoblyudov, Martin F. Schubert
  • Patent number: 10145522
    Abstract: Various aspects of a light emitting apparatus include a substrate having at least one angled portion. Some aspects of the light emitting apparatus include at least one light emitting device arranged on the substrate. Some aspects of the light emitting apparatus include a plurality of conductors arranged on the substrate. In some aspects of the light emitting apparatus, the conductors are electrically coupled to the at least one light emitting device.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: December 4, 2018
    Assignee: BRIDGELUX INC.
    Inventor: Vladimir Odnoblyudov
  • Publication number: 20180342487
    Abstract: Flip chip LEDs comprise a transparent carrier and an active material layer such as AlInGaP bonded to the carrier and that emits light between about 550 to 650 nm. The flip chip LED has a first electrical terminal in contact with a first region of the active material layer, and a second electrical terminal in contact with a second region of the active material layer, wherein the first and second electrical terminals are positioned along a common surface of the active material layer. Chip-on-board LED packages comprise a plurality of the flip chip LEDs with respective first and second electrical terminals interconnected with one another. The package may include Flip chip LEDs that emit light between 420 to 500 nm, and the flip chip LEDs are covered with a phosphorus material comprising a yellow constituent, and may comprise a transparent material disposed over the phosphorus material.
    Type: Application
    Filed: May 22, 2018
    Publication date: November 29, 2018
    Inventor: Vladimir A. Odnoblyudov
  • Patent number: 10141371
    Abstract: Disclosed herein are wide band gap integrated circuits, such as gallium nitride (GaN) integrated circuits, including a plurality of groups of epitaxial layers formed on an engineered substrate, and methods of making the WBG integrated circuits. The epitaxial layers have a coefficient of thermal expansion (CTE) substantially matching the CTE of the engineered substrate. Mesas, internal interconnects, and electrodes configure each group of epitaxial layers into a WBG device. External interconnects connect different WBG devices into a WBG integrated circuit. The CTE matching allows the formation of epitaxial layers with reduced dislocation density and an overall thickness of greater than 10 microns on a six-inch or larger engineered substrate. The large substrate size and thick WBG epitaxial layers allow a large number of high density WBG integrated circuits to be fabricated on a single substrate.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: November 27, 2018
    Assignee: Qromis, Inc.
    Inventors: Vladimir Odnoblyudov, Cem Basceri
  • Patent number: 10134589
    Abstract: A method of fabricating a ceramic substrate structure includes providing a ceramic substrate, encapsulating the ceramic substrate in a barrier layer, and forming a bonding layer coupled to the barrier layer. The method further includes removing a portion of the bonding layer to expose at least a portion of the barrier layer and define fill regions, and depositing a second bonding layer on the at least a portion of the exposed barrier layer and the fill regions.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: November 20, 2018
    Assignee: Qromis, Inc.
    Inventors: Vladimir Odnoblyudov, Cem Basceri, Shari Farrens
  • Patent number: 10134969
    Abstract: Solid-state transducers (“SSTs”) and vertical high voltage SSTs having buried contacts are disclosed herein. An SST die in accordance with a particular embodiment can include a transducer structure having a first semiconductor material at a first side of the transducer structure, and a second semiconductor material at a second side of the transducer structure. The SST can further include a plurality of first contacts at the first side and electrically coupled to the first semiconductor material, and a plurality of second contacts extending from the first side to the second semiconductor material and electrically coupled to the second semiconductor material. An interconnect can be formed between at least one first contact and one second contact. The interconnects can be covered with a plurality of package materials.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: November 20, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Vladimir Odnoblyudov, Martin F. Schubert
  • Publication number: 20180309033
    Abstract: Wafer-level packaging of solid-state transducers (“SSTs”) is disclosed herein. A method in accordance with a particular embodiment includes forming a transducer structure having a first surface and a second surface opposite the first surface, and forming a plurality of separators that extend from at least the first surface of the transducer structure to beyond the second surface. The separators can demarcate lateral dimensions of individual SSTs. The method can further include forming a support substrate on the first surface of the transducer structure, and forming a plurality of discrete optical elements on the second surface of the transducer structure. The separators can form barriers between the discrete optical elements. The method can still further include dicing the SSTs along the separators. Associated SST devices and systems are also disclosed herein.
    Type: Application
    Filed: June 25, 2018
    Publication date: October 25, 2018
    Inventor: Vladimir Odnoblyudov
  • Publication number: 20180309021
    Abstract: Various embodiments of SST dies and solid state lighting (“SSL”) devices with SST dies, assemblies, and methods of manufacturing are described herein. In one embodiment, a SST die includes a substrate material, a first semiconductor material and a second semiconductor material on the substrate material, an active region between the first semiconductor material and the second semiconductor material, and a support structure defined by the substrate material. In some embodiments, the support structure has an opening that is vertically aligned with the active region.
    Type: Application
    Filed: June 28, 2018
    Publication date: October 25, 2018
    Inventors: Vladimir Odnoblyudov, Martin F. Schubert
  • Publication number: 20180301602
    Abstract: Etched trenches in a bond material for die singulation, and associated systems and methods are disclosed. A method for solid state transducer device singulation in accordance with one embodiment includes forming a plurality of trenches by etching through a metallic bond material forming a bond between a carrier substrate and a plurality of the dies and singulating the carrier substrate along the trenches to separate the dies. In particular embodiments, the trenches extend into the carrier substrate. In further particular embodiments, the dies are at least partially, encapsulated in a dielectric material.
    Type: Application
    Filed: June 14, 2018
    Publication date: October 18, 2018
    Inventors: Vladimir Odnoblyudov, Scott D. Schellhammer, Jeremy S. Frei
  • Patent number: 10103290
    Abstract: Various embodiments of SST dies and solid state lighting (“SSL”) devices with SST dies, assemblies, and methods of manufacturing are described herein. In one embodiment, a SST die includes a substrate material, a first semiconductor material and a second semiconductor material on the substrate material, an active region between the first semiconductor material and the second semiconductor material, and a support structure defined by the substrate material. In some embodiments, the support structure has an opening that is vertically aligned with the active region.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: October 16, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Vladimir Odnoblyudov, Martin F. Schubert