Patents by Inventor Vladimir Odnoblyudov

Vladimir Odnoblyudov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9997391
    Abstract: A method of processing an engineered substrate structure includes providing an engineered substrate structure including a polycrystalline substrate and an engineered layer encapsulating the polycrystalline substrate, forming a sacrificial layer coupled to the engineered layer, joining a solid state device structure to the sacrificial layer, forming one or more channels in the solid state device structure by removing one or more portions of the solid state device structure to expose one or more portions of the sacrificial layer, flowing an etching chemical through the one or more channels to the one or more exposed portions of the sacrificial layer, and dissolving the sacrificial layer by interaction between the etching chemical and the sacrificial layer, thereby separating the engineered substrate structure from the solid state device structure.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: June 12, 2018
    Assignee: QROMIS, Inc.
    Inventors: Vladimir Odnoblyudov, Cem Basceri
  • Patent number: 9997662
    Abstract: Various embodiments of solid state transducer (“SST”) devices are disclosed. In several embodiments, a light emitter device includes a metal-oxide-semiconductor (MOS) capacitor, an active region operably coupled to the MOS capacitor, and a bulk semiconductor material operably coupled to the active region. The active region can include at least one quantum well configured to store first charge carriers under a first bias. The bulk semiconductor material is arranged to provide second charge carriers to the active region under the second bias such that the active region emits UV light.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: June 12, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Martin F. Schubert, Vladimir Odnoblyudov
  • Publication number: 20180158917
    Abstract: A method of forming a semiconductor device includes providing an engineered substrate, forming a gallium nitride layer coupled to the engineered substrate, forming a channel region coupled to the gallium nitride layer by forming an aluminum gallium nitride barrier layer on the front surface of the gallium nitride layer, forming a gate dielectric layer coupled to the aluminum gallium nitride barrier layer in the central portion of the channel region, forming a gate contact coupled to the gate dielectric layer, forming a source contact at the first end of the channel region, forming a via at the second end of the channel region, filling the via with a conductive material, forming a drain contact coupled to the via, removing the engineered substrate to expose the back surface of the epitaxial gallium nitride layer, and forming a drain pad on the back surface of the epitaxial gallium nitride layer.
    Type: Application
    Filed: December 5, 2017
    Publication date: June 7, 2018
    Applicant: QROMIS, Inc.
    Inventors: Vladimir Odnoblyudov, Ozgur Aktas
  • Patent number: 9985170
    Abstract: Flip chip LEDs include a transparent substrate or carrier having an active material attached thereto and having a number of electrodes disposed along a common surface of the active material. The substrate may include a number of surface features disposed along a first surface adjacent the active material for improving light extraction from the active material, and includes a number of surface features along a second surface opposite the first surface for minimizing internal reflection of light through the substrate, thereby improving light extraction from the transparent substrate. The surface features on both surfaces may be arranged having a random or ordered orientation relative to one another. A plurality of such flip chip LEDs may be physically packaged together in a manner providing electrical connection with the same for a lighting end-use application.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: May 29, 2018
    Assignee: Bridgelux, Inc.
    Inventor: Vladimir A. Odnoblyudov
  • Patent number: 9985183
    Abstract: Various embodiments of light emitting dies and solid state lighting (“SSL”) devices with light emitting dies, assemblies, and methods of manufacturing are described herein. In one embodiment, a light emitting die includes an SSL structure configured to emit light in response to an applied electrical voltage, a first electrode carried by the SSL structure, and a second electrode spaced apart from the first electrode of the SSL structure. The first and second electrode are configured to receive the applied electrical voltage. Both the first and second electrodes are accessible from the same side of the SSL structure via wirebonding.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: May 29, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Martin F. Schubert, Vladimir Odnoblyudov
  • Patent number: 9978724
    Abstract: Flip chip LEDs comprise a transparent carrier and an active material layer such as AlInGaP bonded to the carrier and that emits light between about 550 to 650 nm. The flip chip LED has a first electrical terminal in contact with a first region of the active material layer, and a second electrical terminal in contact with a second region of the active material layer, wherein the first and second electrical terminals are positioned along a common surface of the active material layer. Chip-on-board LED packages comprise a plurality of the flip chip LEDs with respective first and second electrical terminals interconnected with one another. The package may include Flip chip LEDs that emit light between 420 to 500 nm, and the flip chip LEDs are covered with a phosphorus material comprising a yellow constituent, and may comprise a transparent material disposed over the phosphorus material.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: May 22, 2018
    Assignee: Bridgelux, Inc.
    Inventor: Vladimir A. Odnoblyudov
  • Patent number: 9978807
    Abstract: Solid state transducer devices having integrated electrostatic discharge protection and associated systems and methods are disclosed herein. In one embodiment, a solid state transducer device includes a solid state emitter, and an electrostatic discharge device carried by the solid state emitter. In some embodiments, the electrostatic discharge device and the solid state emitter share a common first contact and a common second contact. In further embodiments, the solid state lighting device and the electrostatic discharge device share a common epitaxial substrate. In still further embodiments, the electrostatic discharge device is positioned between the solid state lighting device and a support substrate.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: May 22, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Martin F. Schubert, Vladimir Odnoblyudov
  • Patent number: 9966414
    Abstract: In various embodiments, lighting systems include an electrically insulating carrier having a plurality of conductive elements disposed thereon and a light-emitting array. The light-emitting array is disposed over the carrier and includes a plurality of light-emitting diodes (LEDs) that each has at least two electrical contacts electrically connected to conductive elements by an electrical connection featuring solder.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: May 8, 2018
    Assignee: COOLEDGE LIGHTING INC.
    Inventors: Michael A. Tischler, Vladimir Odnoblyudov, David Keogh
  • Publication number: 20180123010
    Abstract: Light emitting diode packages as disclosed herein include a monolithic chip including at least a first and a second light emitting diode (LED) that are electrically coupled in series, wherein the first and the second LEDs each include at least one electrical terminal configured to be electrically coupled to a power source. The monolithic chip is mounted onto a connection substrate having first and second landing pads formed from metallic material and electrically isolated from each other. The monolithic chip is mounted to the connection substrate such that the electrical terminal of the first LED is electrically connected to the first landing pad and the electrical terminal of the second LED is electrically connected to the second landing pad. In an example, the monolithic chip includes a third and a fourth LED electrically coupled to each other in series, and electrically coupled to the first and second LEDs in parallel.
    Type: Application
    Filed: December 22, 2017
    Publication date: May 3, 2018
    Inventor: Vladimir A. Odnoblyudov
  • Publication number: 20180114726
    Abstract: A method of fabricating a semiconductor structure includes providing an engineered substrate including a polycrystalline substrate, a barrier layer encapsulating the polycrystalline substrate, and a bonding layer coupled to the barrier layer. The method further includes forming a first silicon layer coupled to the bonding layer, forming a dielectric layer coupled to the first silicon layer, forming a second silicon layer coupled to the dielectric layer, forming a GaN layer coupled to the second silicon layer, forming a GaN based device coupled to the GaN layer, removing the engineered substrate to expose a back surface of the first silicon layer, forming a silicon based device coupled to the back surface of the first silicon layer, forming a via from the back surface of the first silicon layer, filling the via with a conducting material, and interconnecting the GaN based device and the silicon based device through the via.
    Type: Application
    Filed: October 19, 2017
    Publication date: April 26, 2018
    Applicant: QROMIS, Inc.
    Inventors: Vladimir Odnoblyudov, Cem Basceri, Shari Farrens
  • Publication number: 20180114693
    Abstract: A method of fabricating a semiconductor structure includes providing an engineered substrate including a polycrystalline substrate, a barrier layer encapsulating the polycrystalline substrate, and a bonding layer coupled to the barrier layer. The method further includes forming a first silicon layer coupled to the bonding layer, forming a dielectric layer coupled to the first silicon layer, forming a second silicon layer coupled to the dielectric layer, removing a portion of the second silicon layer and a corresponding portion of the dielectric layer to expose a portion of the first silicon layer, forming a gallium nitride (GaN) layer coupled to the exposed portion of the first silicon layer, forming a gallium nitride (GaN) based device coupled to the GaN layer, and forming a silicon-based device coupled to a remaining portion of the second silicon layer.
    Type: Application
    Filed: October 19, 2017
    Publication date: April 26, 2018
    Applicant: QROMIS, Inc.
    Inventors: Vladimir Odnoblyudov, Cem Basceri, Shari Farrens, Ozgur Aktas
  • Patent number: 9911903
    Abstract: Systems and methods for improved light emitting efficiency of a solid state transducer (SST), for example light emitting diodes (LED), are disclosed. One embodiment of an SST die in accordance with the technology includes a reflective material disposed over electrical connectors on a front side of the die. The reflective material has a higher reflectivity than a base material of the connectors such that light traveling toward the connectors reflects back out of the device.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: March 6, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Martin F. Schubert, Vladimir Odnoblyudov
  • Publication number: 20180061630
    Abstract: A semiconductor diode includes an engineered substrate including a substantially single crystal layer, a buffer layer coupled to the substantially single crystal layer, and a semi-insulating layer coupled to the buffer layer. The semiconductor diode also includes a first N-type gallium nitride layer coupled to the semi-insulating layer and a second N-type gallium nitride layer coupled to the first N-type gallium nitride layer. The first N-type gallium nitride layer has a first doping concentration and the second N-type gallium nitride layer has a second doping concentration less than the first doping concentration. The semiconductor diode further includes a P-type gallium nitride layer coupled to the second N-type gallium nitride layer, an anode contact coupled to the P-type gallium nitride layer, and a cathode contact coupled to a portion of the first N-type gallium nitride layer.
    Type: Application
    Filed: August 23, 2017
    Publication date: March 1, 2018
    Applicant: Quora Technology, Inc.
    Inventors: Vladimir Odnoblyudov, Dilip Risbud, Ozgur Aktas, Cem Basceri
  • Publication number: 20180061694
    Abstract: A power device includes a substrate comprising a polycrystalline ceramic core, a first adhesion layer coupled to the polycrystalline ceramic core, a barrier layer coupled to the first adhesion layer, a bonding layer coupled to the barrier layer, and a substantially single crystal layer coupled to the bonding layer. The power device also includes a buffer layer coupled to the substantially single crystal layer and a channel region coupled to the buffer layer. The channel region comprises a first end, a second end, and a central portion disposed between the first end and the second end. The channel region also includes a channel region barrier layer coupled to the buffer layer. The power device further includes a source contact disposed at the first end of the channel region, a drain contact disposed at the second end of the channel region, and a gate contact coupled to the channel region.
    Type: Application
    Filed: August 23, 2017
    Publication date: March 1, 2018
    Applicant: Quora Technology, Inc.
    Inventors: Vladimir Odnoblyudov, Dilip Risbud, Ozgur Aktas, Cem Basceri
  • Publication number: 20180047557
    Abstract: A method of fabricating a ceramic substrate structure includes providing a ceramic substrate, encapsulating the ceramic substrate in a barrier layer, and forming a bonding layer coupled to the barrier layer. The method further includes removing a portion of the bonding layer to expose at least a portion of the barrier layer and define fill regions, and depositing a second bonding layer on the at least a portion of the exposed barrier layer and the fill regions.
    Type: Application
    Filed: June 13, 2017
    Publication date: February 15, 2018
    Applicant: QUORA Technology, Inc.
    Inventors: Vladimir Odnoblyudov, Cem Basceri, Shari Farrens
  • Publication number: 20180047558
    Abstract: A substrate includes a support structure comprising: a polycrystalline ceramic core; a first adhesion layer coupled to the polycrystalline ceramic core; a conductive layer coupled to the first adhesion layer; a second adhesion layer coupled to the conductive layer; and a barrier layer coupled to the second adhesion layer. The substrate also includes a silicon oxide layer coupled to the support structure, a substantially single crystalline silicon layer coupled to the silicon oxide layer, and an epitaxial layer coupled to the substantially single crystalline silicon layer.
    Type: Application
    Filed: June 13, 2017
    Publication date: February 15, 2018
    Applicant: QUORA Technology
    Inventors: Vladimir Odnoblyudov, Cem Basceri, Shari Farrens
  • Publication number: 20180047618
    Abstract: A substrate includes a polycrystalline ceramic core; a first adhesion layer encapsulating the polycrystalline ceramic core; a conductive layer encapsulating the first adhesion layer; a second adhesion layer encapsulating the conductive layer; a barrier layer encapsulating the second adhesion layer, and a bonding layer coupled to the barrier layer, and a substantially single crystalline silicon layer coupled to the bonding layer.
    Type: Application
    Filed: June 13, 2017
    Publication date: February 15, 2018
    Applicant: QUORA Technology
    Inventors: Vladimir Odnoblyudov, Cem Basceri, Shari Farrens
  • Publication number: 20180038012
    Abstract: An engineered substrate includes a support structure comprising a polycrystalline ceramic core, an adhesion layer coupled to the polycrystalline ceramic core, and a barrier layer coupled to the adhesion layer. The engineered substrate also includes an bonding layer coupled to the support structure, a substantially single crystal layer coupled to the bonding layer, and an epitaxial gallium nitride layer coupled to the substantially single crystal layer.
    Type: Application
    Filed: August 2, 2017
    Publication date: February 8, 2018
    Applicant: QUORA Technology, Inc.
    Inventors: Vladimir Odnoblyudov, Cem Basceri
  • Publication number: 20180033909
    Abstract: Semiconductor device assemblies having solid-state transducer (SST) devices and associated semiconductor devices, systems, and are disclosed herein. In one embodiment, a method of forming a semiconductor device assembly includes forming a support substrate, a transfer structure, and a plurality semiconductor structures between the support substrate and the transfer structure. The method further includes removing the support substrate to expose an active surface of the individual semiconductor structures and a trench between the individual semiconductor structures. The semiconductor structures can be attached to a carrier substrate that is optically transmissive such that the active surface can emit and/or receive the light through the carrier substrate. The individual semiconductor structures can then be processed on the carrier substrate with the support substrate removed.
    Type: Application
    Filed: October 10, 2017
    Publication date: February 1, 2018
    Inventors: Martin F. Schubert, Vladimir Odnoblyudov, Scott D. Schellhammer
  • Publication number: 20180013044
    Abstract: A wafer-level process for manufacturing solid state lighting (“SSL”) devices using large-diameter preformed metal substrates is disclosed. A light emitting structure is formed on a growth substrate, and a preformed metal substrate is bonded to the light emitting structure opposite the growth substrate. The preformed metal substrate can be bonded to the light emitting structure via a metal-metal bond, such as a copper-copper bond, or with an inter-metallic compound bond.
    Type: Application
    Filed: September 8, 2017
    Publication date: January 11, 2018
    Inventor: Vladimir Odnoblyudov