Patents by Inventor Walid M. Hafez

Walid M. Hafez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10964690
    Abstract: Techniques are disclosed for forming semiconductor structures including resistors between gates on self-aligned gate edge architecture. A semiconductor structure includes a first semiconductor fin extending in a first direction, and a second semiconductor fin adjacent to the first semiconductor fin, extending in the first direction. A first gate structure is disposed proximal to a first end of the first semiconductor fin and over the first semiconductor fin in a second direction, orthogonal to the first direction, and a second gate structure is disposed proximal to a second end of the first semiconductor fin and over the first semiconductor fin in the second direction. A first structure comprising isolation material is centered between the first and second semiconductor fins. A second structure comprising resistive material is disposed in the first structure, the second structure extending at least between the first gate structure and the second gate structure.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: March 30, 2021
    Assignee: Intel Corporation
    Inventors: Roman W. Olac-Vaw, Walid M. Hafez, Chia-Hong Jan, Hsu-Yu Chang, Neville L. Dias, Rahul Ramaswamy, Nidhi Nidhi, Chen-Guan Lee
  • Publication number: 20210090956
    Abstract: Non-planar I/O and logic semiconductor devices having different workfunctions on common substrates and methods of fabricating non-planar I/O and logic semiconductor devices having different workfunctions on common substrates are described. For example, a semiconductor structure includes a first semiconductor device disposed above a substrate. The first semiconductor device has a conductivity type and includes a gate electrode having a first workfunction. The semiconductor structure also includes a second semiconductor device disposed above the substrate. The second semiconductor device has the conductivity type and includes a gate electrode having a second, different, workfunction.
    Type: Application
    Filed: December 4, 2020
    Publication date: March 25, 2021
    Inventors: Roman W. OLAC-VAW, Walid M. HAFEZ, Chia-Hong JAN, Pei-Chi LIU
  • Patent number: 10950606
    Abstract: Dual fin endcaps for self-aligned gate edge architectures, and methods of fabricating dual fin endcaps for self-aligned gate edge architectures, are described. In an example, a semiconductor structure includes an I/O device having a first plurality of semiconductor fins disposed above a substrate and protruding through an uppermost surface of a trench isolation layer. A logic device having a second plurality of semiconductor fins is disposed above the substrate and protrudes through the uppermost surface of the trench isolation layer. A gate edge isolation structure is disposed between the I/O device and the logic device. A semiconductor fin of the first plurality of semiconductor fins closest to the gate edge isolation structure is spaced farther from the gate edge isolation structure than a semiconductor fin of the second plurality of semiconductor fins closest to the gate edge isolation structure.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: March 16, 2021
    Assignee: Intel Corporation
    Inventors: Walid M. Hafez, Roman W. Olac-Vaw, Chia-Hong Jan
  • Patent number: 10930729
    Abstract: Fin-based thin film resistors, and methods of fabricating fin-based thin film resistors, are described. In an example, an integrated circuit structure includes a fin protruding through a trench isolation region above a substrate. The fin includes a semiconductor material and has a top surface, a first end, a second end, and a pair of sidewalls between the first end and the second end. An isolation layer is conformal with the top surface, the first end, the second end, and the pair of sidewalls of the fin. A resistor layer is conformal with the isolation layer conformal with the top surface, the first end, the second end, and the pair of sidewalls of the fin. A first anode cathode electrode is electrically connected to the resistor layer. A second anode or cathode electrode is electrically connected to the resistor layer.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: February 23, 2021
    Assignee: Intel Corporation
    Inventors: Chia-Hong Jan, Walid M. Hafez, Neville L. Dias, Rahul Ramaswamy, Hsu-Yu Chang, Roman W. Olac-Vaw, Chen-Guan Lee
  • Publication number: 20210036026
    Abstract: High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region.
    Type: Application
    Filed: October 16, 2020
    Publication date: February 4, 2021
    Inventors: Walid M. HAFEZ, Jeng-Ya D. YEH, Curtis TSAI, Joodong PARK, Chia-Hong JAN, Gopinath BHIMARASETTI
  • Patent number: 10892192
    Abstract: Non-planar I/O and logic semiconductor devices having different workfunctions on common substrates and methods of fabricating non-planar I/O and logic semiconductor devices having different workfunctions on common substrates are described. For example, a semiconductor structure includes a first semiconductor device disposed above a substrate. The first semiconductor device has a conductivity type and includes a gate electrode having a first workfunction. The semiconductor structure also includes a second semiconductor device disposed above the substrate. The second semiconductor device has the conductivity type and includes a gate electrode having a second, different, workfunction.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: January 12, 2021
    Assignee: Intel Corporation
    Inventors: Roman W. Olac-Vaw, Walid M. Hafez, Chia-Hong Jan, Pei-Chi Liu
  • Patent number: 10892261
    Abstract: Metal resistors and self-aligned gate edge (SAGE) architectures having metal resistors are described. In an example, a semiconductor structure includes a plurality of semiconductor fins protruding through a trench isolation region above a substrate. A first gate structure is over a first of the plurality of semiconductor fins. A second gate structure is over a second of the plurality of semiconductor fins. A gate edge isolation structure is laterally between and in contact with the first gate structure and the second gate structure. The gate edge isolation structure is on the trench isolation region and extends above an uppermost surface of the first gate structure and the second gate structure. A metal layer is on the gate edge isolation structure and is electrically isolated from the first gate structure and the second gate structure.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: January 12, 2021
    Assignee: Intel Corporation
    Inventors: Walid M. Hafez, Roman W. Olac-Vaw, Joodong Park, Chen-Guan Lee, Chia-Hong Jan
  • Publication number: 20200411435
    Abstract: An integrated circuit structure comprises a base and a plurality of metal levels over the base. A first metal level includes a first dielectric material. The first metal level further includes a first plurality of interconnect lines in the first dielectric material, wherein the first plurality of interconnect lines in the first metal level have variable widths from relatively narrow to relatively wide, and wherein the first plurality of interconnect lines have variable heights based on the variable widths, such that a relatively wide one of the first plurality of interconnect lines has a taller height from the substrate than a relatively narrow one of the first plurality of interconnect lines, and a shorter distance to a top of the first metal level.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 31, 2020
    Inventors: En-Shao LIU, Joodong PARK, Chen-Guan LEE, Walid M. HAFEZ, Chia-Hong JAN, Jiansheng XU
  • Publication number: 20200411665
    Abstract: Self-aligned gate endcap (SAGE) architectures having vertical transistors with SAGE gate structures, and methods of fabricating SAGE architectures having vertical transistors with SAGE gate structures, are described. In an example, an integrated circuit structure includes a first semiconductor fin having first fin sidewall spacers, and a second semiconductor fin having second fin sidewall spacers. A gate endcap structure is between the first and second semiconductor fins and laterally between and in contact with adjacent ones of the first and second fin sidewall spacers, the gate endcap structure including a gate electrode and a gate dielectric. A first source or drain contact is electrically coupled to the first semiconductor fin. A second source or drain contact is electrically coupled to the second semiconductor fin.
    Type: Application
    Filed: June 27, 2019
    Publication date: December 31, 2020
    Inventors: Walid M. HAFEZ, Sairam SUBRAMANIAN, Chia-Hong JAN
  • Publication number: 20200395358
    Abstract: Disclosed herein are IC structures, packages, and devices that include self-aligned III-N transistors monolithically integrated on the same support structure or material (e.g., a substrate, a die, or a chip) as extended-drain III-N transistors. Self-aligned III-N transistors may provide a viable approach to implementing digital logic circuits, e.g., to implementing enhancement mode transistors, on the same support structure with extended-drain III-N transistors which may be used as high-power transistors used to implement various RF components, thus enabling integration of III-N devices with digital logic.
    Type: Application
    Filed: June 17, 2019
    Publication date: December 17, 2020
    Applicant: Intel Corporation
    Inventors: Marko Radosavljevic, Han Wui Then, Sansaptak Dasgupta, Paul B. Fischer, Nidhi Nidhi, Rahul Ramaswamy, Johann Christian Rode, Walid M. Hafez
  • Patent number: 10854757
    Abstract: A transistor including a channel disposed between a source and a drain, a gate electrode disposed on the channel and surrounding the channel, wherein the source and the drain are formed in a body on a substrate and the channel is separated from the body. A method of forming an integrated circuit device including forming a trench in a dielectric layer on a substrate, the trench including dimensions for a transistor body including a width; forming a channel material in the trench; recessing the dielectric layer to expose a first portion of the channel material; increasing a width dimension of the exposed channel material; recessing the dielectric layer to expose a second portion of the channel material; removing the second portion of the channel material; and forming a gate stack on the first portion of the channel material, the gate stack including a gate dielectric and a gate electrode.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: December 1, 2020
    Assignee: Intel Corporation
    Inventors: Rahul Ramaswamy, Hsu-Yu Chang, Chia-Hong Jan, Walid M. Hafez, Neville L. Dias, Roman W. Olac-Vaw, Chen-Guan Lee
  • Patent number: 10854607
    Abstract: An impurity source film is formed along a portion of a non-planar semiconductor fin structure. The impurity source film may serve as source of an impurity that becomes electrically active subsequent to diffusing from the source film into the semiconductor fin. In one embodiment, an impurity source film is disposed adjacent to a sidewall surface of a portion of a sub-fin region disposed between an active region of the fin and the substrate and is more proximate to the substrate than to the active area.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: December 1, 2020
    Assignee: Intel Corporation
    Inventors: Chia-Hong Jan, Walid M Hafez, Jeng-Ya David Yeh, Hsu-Yu Chang, Neville L Dias, Chanaka D Munasinghe
  • Publication number: 20200373421
    Abstract: Disclosed herein are IC structures, packages, and devices that include III-N transistor arrangements that may reduce nonlinearity of off-state capacitance of the III-N transistors. In various aspects, III-N transistor arrangements limit the extent of access regions of the transistors, compared to conventional implementations, which may limit the depletion of the access regions. Due to the limited extent of the depletion regions of a transistor, the off-state capacitance may exhibit less variability in values across different gate-source voltages and, hence, exhibit a more linear behavior during operation.
    Type: Application
    Filed: May 22, 2019
    Publication date: November 26, 2020
    Applicant: Intel Corporation
    Inventors: Nidhi Nidhi, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta, Paul B. Fischer, Rahul Ramaswamy, Walid M. Hafez, Johann Christian Rode
  • Publication number: 20200373299
    Abstract: An embodiment includes an apparatus comprising: first and second semiconductor fins that are parallel to each other; a first gate, on the first fin, including a first gate portion between the first and second fins; a second gate, on the second fin, including a second gate portion between the first and second fins; a first oxide layer extending along a first face of the first gate portion, a second oxide layer extending along a second face of the second gate portion, and a third oxide layer connecting the first and second oxide layers to each other; and an insulation material between the first and second gate portions; wherein the first, second, and third oxide layers each include an oxide material and the insulation material does not include the oxide material. Other embodiments are described herein.
    Type: Application
    Filed: August 11, 2020
    Publication date: November 26, 2020
    Inventors: Leonard P. Guler, Gopinath Bhimarasetti, Vyom Sharma, Walid M. Hafez, Christopher P. Auth
  • Publication number: 20200373297
    Abstract: Disclosed herein are IC structures, packages, and devices that include III-N transistor-based cascode arrangements that may simultaneously realize enhancement mode transistor operation and high voltage capability. In one aspect, an IC structure includes a source region, a drain region, an enhancement mode III-N transistor, and a depletion mode III-N transistor, where each of the transistors includes a first and a second source or drain (S/D) terminals. The transistors are arranged in a cascode arrangement in that the first S/D terminal of the enhancement mode III-N transistor is coupled to the source region, the second S/D terminal of the enhancement mode III-N transistor is coupled to the first S/D terminal of the depletion mode III-N transistor, and the second S/D terminal of the depletion mode III-N transistor is coupled to the drain region.
    Type: Application
    Filed: May 22, 2019
    Publication date: November 26, 2020
    Applicant: Intel Corporation
    Inventors: Nidhi Nidhi, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta, Paul B. Fischer, Rahul Ramaswamy, Walid M. Hafez, Johann Christian Rode
  • Patent number: 10847456
    Abstract: Techniques and circuitry are disclosed for efficiently implementing programmable memory array circuit architectures, including both non-volatile and volatile memories. The memory circuitry employs an antifuse scheme that includes an array of 1T bitcells, wherein each bitcell effectively contains one gate or transistor-like device that provides both an antifuse element and a selector device for that bitcell. In particular, the bitcell device has asymmetric trench-based source/drain contacts such that one contact forms a capacitor in conjunction with the spacer and gate metal, and the other contact forms a diode in conjunction with a doped diffusion area and the gate metal. The capacitor serves as the antifuse element of the bitcell, and can be programmed by breaking down the spacer. The diode effectively provides a Schottky junction that serves as a selector device which can eliminate program and read disturbs from bitcells sharing the same bitline/wordline.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: November 24, 2020
    Assignee: Intel Corporation
    Inventors: Ting Chang, Chia-Hong Jan, Walid M. Hafez
  • Patent number: 10847544
    Abstract: High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: November 24, 2020
    Assignee: Intel Corporation
    Inventors: Walid M. Hafez, Jeng-Ya D. Yeh, Curtis Tsai, Joodong Park, Chia-Hong Jan, Gopinath Bhimarasetti
  • Patent number: 10840341
    Abstract: A semiconductor device is proposed. The semiconductor device includes a group III-N semiconductor layer, an electrically insulating material layer located on the group III-N semiconductor layer, and a metal contact structure located on the electrically insulating material layer. An electrical resistance between the metal contact structure and the group III-N semiconductor layer through the electrically insulating material layer is smaller than 1*10?7? for an area of 1 mm2. Further, semiconductor devices including a low resistance contact structure, radio frequency devices, and methods for forming semiconductor devices are proposed.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: November 17, 2020
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Han Wui Then, Sansaptak Dasgupta, Paul B. Fischer, Walid M. Hafez
  • Publication number: 20200335526
    Abstract: Disclosed herein are IC structures, packages, and devices that include Si-based semiconductor material stack monolithically integrated on the same support structure as non-Si transistors or other non-Si-based devices. In some aspects, the Si-based semiconductor material stack may be provided by semiconductor regrowth over an insulator material. Providing a Si-based semiconductor material stack monolithically integrated on the same support structure as non-Si based devices may provide a viable approach to integrating Si-based transistors with non-Si technologies because the Si-based semiconductor material stack may serve as a foundation for forming Si-based transistors.
    Type: Application
    Filed: April 22, 2019
    Publication date: October 22, 2020
    Applicant: Intel Corporation
    Inventors: Nidhi Nidhi, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta, Paul B. Fischer, Rahul Ramaswamy, Walid M. Hafez, Johann Christian Rode
  • Publication number: 20200335582
    Abstract: A dielectric and isolation lower fin material is described that is useful for fin-based electronics. In some examples, a dielectric layer is on first and second sidewalls of a lower fin. The dielectric layer has a first upper end portion laterally adjacent to the first sidewall of the lower fin and a second upper end portion laterally adjacent to the second sidewall of the lower fin. An isolation material is laterally adjacent to the dielectric layer directly on the first and second sidewalls of the lower fin and a gate electrode is over a top of and laterally adjacent to sidewalls of an upper fin. The gate electrode is over the first and second upper end portions of the dielectric layer and the isolation material.
    Type: Application
    Filed: July 1, 2020
    Publication date: October 22, 2020
    Inventors: Walid M. HAFEZ, Chia-Hong JAN