Patents by Inventor Wang Mo Jung

Wang Mo Jung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10535873
    Abstract: The present invention provides a positive electrode active material for a secondary battery and a secondary battery including the same, which includes a core; a shell located to surround the core; and a buffer layer located between the core and the shell, and including a three-dimensional network structure connecting the core and the shell and a pore. The decomposition of the active material may be minimized by a rolling process in the manufacture of an electrode by controlling the specific surface area, average particle diameter and porosity of the active material particles as well as the specific structure, the reactivity with an electrolyte solution may be maximized, and the output and lifespan characteristics of the secondary battery may be improved since the particles forming the shell have crystal structure with orientation which facilitates intercalation and deintercalation of lithium ions.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: January 14, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Sang Wook Lee, Wang Mo Jung, Byung Chun Park, Ju Kyung Shin, Sang Min Park, Min Suk Kang
  • Patent number: 10529985
    Abstract: Provided are a method of preparing a cathode active material including coating a surface of a lithium transition metal oxide with a lithium boron oxide by dry mixing the lithium transition metal oxide and a boron-containing compound and performing a heat treatment, and a cathode active material prepared thereby. A method of preparing a cathode active material according to an embodiment of the present invention may easily transform lithium impurities present in a lithium transition metal oxide into a structurally stable lithium boron oxide by performing a heat treatment near the melting point of a boron-containing compound. Also, a coating layer may be formed in which the lithium boron oxide is uniformly coated in an amount proportional to the used amount of the boron-containing compound even at a low heat treatment temperature.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: January 7, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Hyun Jin Oh, Ho Suk Shin, Jin Hyung Lim, Dong Hun Lee, Joo Hong Jin, Wang Mo Jung
  • Patent number: 10516186
    Abstract: The present invention provides a lithium secondary battery, including a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a separator provided between the positive electrode and the negative electrode, wherein the negative electrode active material may include a titanium-based composite, wherein, when the lithium secondary battery is charged to SOC 50 under C-rate conditions of 0.1 to 40 C, the titanium-based composite has a ratio of the peak area of a plane (400) and the peak area of a plane (111) of 0.76 or more in a measured X-ray diffraction spectrum (XRD). Therefore, the present invention may provide a lithium secondary battery having excellent output characteristics and a battery pack in which a BMS prediction algorithm is simplified.
    Type: Grant
    Filed: November 24, 2016
    Date of Patent: December 24, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Sung Bin Park, Hye Lim Jeon, Woo Yeon Kong, Wang Mo Jung, Seong Hoon Kang
  • Publication number: 20190386294
    Abstract: A positive electrode active material includes a lithium-rich lithium manganese-based oxide, wherein the lithium-rich lithium manganese-based oxide is represented by the following chemical formula (1), Li1+aNixCoyMnzMvO2-bAb??(1) wherein, 0<a?0.2, 0<x?0.4, 0<y?0.4, 0.5?z?0.9, 0?v?0.2, a+x+y+z+v=1, and 0?b?0.5; M is one or more elements selected from the group consisting of Al, Zr, Zn, Ti, Mg, Ga, In, Ru, Nb, and Sn; and A is one or more elements selected from the group consisting of P, N, F, S and Cl; wherein (i) lithium tungsten (W) compound, or the (i) lithium tungsten (W) compound and (ii) tungsten (W) compound are contained on the lithium-rich lithium manganese-based oxide; in an amount of 0.1% to 7% by weight based on the total weight of the positive electrode active material, wherein the (i) lithium tungsten (W) compound includes a composite of the (ii) tungsten (W) compound and a lithium.
    Type: Application
    Filed: September 7, 2018
    Publication date: December 19, 2019
    Applicant: LG Chem, Ltd.
    Inventors: Gi Beom Han, Jintae Hwang, Sungbin Park, Wang Mo Jung
  • Patent number: 10505190
    Abstract: Disclosed is a lithium-cobalt based complex oxide represented by Formula 1 below including lithium, cobalt and manganese wherein the lithium-cobalt based complex oxide maintains a crystal structure of a single O3 phase at a state of charge (SOC) of 50% or more based on a theoretical amount: LixCo1-y-zMnyAzO2??(1) wherein 0.95?x?1.15, 0?y?0.3 and 0?z?0.2; and A is at least one element selected the group consisting of Al, Mg, Ti, Zr, Sr, W, Nb, Mo, Ga, and Ni.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: December 10, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Sun Sik Shin, Hye Lim Jeon, Myung Ki Lee, Geun Gi Min, Wang Mo Jung
  • Publication number: 20190372115
    Abstract: A method for positive electrode active material for a secondary battery includes preparing a precursor by reacting a nickel raw material, a cobalt raw material and an M1 raw material; forming a first surface-treated layer including an oxide of Formula 2 below, on a surface of a core including a lithium composite metal oxide of Formula 1 below, by mixing the precursor with a lithium raw material and an M3 raw material, firing the resultant mixture; and forming a second surface-treated layer including a lithium compound of Formula 3 below, on the core with the first surface-treated layer formed thereon, LiaNi1?x?yCoxM1yM3zM2wO2 ??[Formula 1] LimM4O(m+n)/2 ??[Formula 2] LipM5qAr ??[Formula 3] wherein, in Formulae 1 to 3, A, M1 to M5, a, x, y, z, w, m, n, p, and q are the same as those defined in the specification.
    Type: Application
    Filed: August 15, 2019
    Publication date: December 5, 2019
    Applicant: LG Chem, Ltd.
    Inventors: Ju Kyung Shin, Wang Mo Jung, Byung Chun Park, Ji Hoon Ryu, Sang Min Park, Sang Wook Lee
  • Patent number: 10490816
    Abstract: The present invention relates to a positive electrode active material for a lithium secondary battery, and a lithium secondary battery including the same, and the positive electrode active material includes lithium cobalt oxide particles. The lithium cobalt oxide particles include lithium cobalt oxide having a Li/Co molar ratio of less than 1 in the particles. Good rate property and life property may be obtained without worrying on the deterioration of initial capacity property.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: November 26, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Min Suk Kang, Chi Ho Jo, Ji Hoon Ryu, Sun Sik Shin, Wang Mo Jung
  • Publication number: 20190312260
    Abstract: Provided is a positive electrode active material particle including a core that includes lithium cobalt oxide represented by the following Chemical Formula 1; and a shell that is located on the surface of the core and includes lithium cobalt phosphate represented by the following Chemical Formula 2, wherein the shell has a tetrahedral phase: LiaCo(1-x)MxO2-yAy??(1) wherein M is at least one of Ti, Mg, Zn, Si, Al, Zr, V, Mn, Nb, and or Ni, A is oxygen-substitutional halogen, and 0.95?a?1.05, 0?x?0.2, 0?y?0.2, and 0?x+y?0.2, LibCoPO4??(2) wherein 0?b?1.
    Type: Application
    Filed: July 27, 2017
    Publication date: October 10, 2019
    Applicant: LG Chem, Ltd.
    Inventors: Younguk Park, Chi Ho Jo, Bo Ram Lee, Sungbin Park, Hyuck Hur, Wang Mo Jung
  • Patent number: 10439216
    Abstract: The present invention provides a positive electrode active material for secondary battery and a secondary battery including the same. The positive electrode active material includes a core including a lithium composite metal oxide of Formula 1 below, a first surface-treated layer positioned on the surface of the core and including a lithium oxide of Formula 2 below, and a second surface treated layer positioned on the core or the first surface-treated layer and including a lithium compound of Formula 3. Thus, the present invention can improve capacity characteristics and output characteristics of a battery and also reduce the generation of gas, LiaNi1-x-yCoxM1yM3zM2wO2 ??[Formula 1] LimM4O(m+n)/2 ??[Formula 2] LipM5qAr ??[Formula 3] (in formulae 1 to 3, A, M1 to M5, a, x, y, z, w, m, n, p, and q are the same as those defined in the specification).
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: October 8, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Ju Kyung Shin, Wang Mo Jung, Byung Chun Park, Ji Hoon Ryu, Sang Min Park, Sang Wook Lee
  • Publication number: 20190300382
    Abstract: The present invention provides a positive electrode active material for a secondary battery, which includes a lithium transition metal oxide including nickel (Ni) and cobalt (Co), and at least one selected from the group consisting of aluminum (Al), manganese (Mn), and a combination thereof. The lithium transition metal oxide is characterized in that the content of nickel (Ni) in the total transition metal elements is 80 mol % or more, and the cation mixing ratio of Ni cations in a lithium layer in the lithium transition metal oxide structure is 1.1% or less.
    Type: Application
    Filed: December 19, 2017
    Publication date: October 3, 2019
    Applicant: LG Chem, Ltd.
    Inventors: Ji Hye Kim, Byung Chun Park, So Ra Baek, Tae Gu Yoo, Wang Mo Jung
  • Publication number: 20190288285
    Abstract: The present invention relates to a positive electrode active material for a lithium secondary battery which includes a lithium composite transition metal oxide including nickel (Ni), cobalt (Co), and manganese (Mn), wherein a portion of nickel (Ni) sites of the lithium composite transition metal oxide is substituted with tungsten (W), and an amount of a lithium tungsten oxide remaining on surfaces of lithium composite transition metal oxide particles is 1,000 ppm or less.
    Type: Application
    Filed: February 28, 2018
    Publication date: September 19, 2019
    Applicant: LG Chem, Ltd.
    Inventors: Ji Hye Kim, Byung Chun Park, So Ra Baek, Tae Gu Yoo, Wang Mo Jung
  • Patent number: 10418634
    Abstract: Disclosed are a cathode active material for lithium secondary batteries including lithium-containing metal oxide particles; a first surface treatment layer formed on the surfaces of the lithium-containing metal oxide particles and including at least one compound selected from the group consisting of fluorine-doped metal oxides and fluorine-doped metal hydroxides; and a second surface treatment layer formed on a surface of the first surface treatment layer and including a fluorine copolymer, and a method of manufacturing the same.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: September 17, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Byung Chun Park, Wang Mo Jung, Sang Seung Oh, Sungbin Park, Ji Hye Kim
  • Patent number: 10403929
    Abstract: Disclosed are a cathode additive of a lithium secondary battery and a method of preparing the same. The lithium secondary may have high irreversible capacity and further improved capacity characteristics.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: September 3, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Hyelim Jeon, Donghun Lee, Eunsol Lho, Sang wook Lee, Wang Mo Jung
  • Publication number: 20190221845
    Abstract: Provided are a metal element-doped positive electrode active material for a high voltage and a preparation method thereof. The positive electrode active material may include a lithium cobalt oxide having a layered crystal structure; and a metal element (M) incorporated into the lithium cobalt oxide in an amount of 0.2 parts by weight to 1 part by weight with respect to 100 parts by weight of the lithium cobalt oxide, wherein the metal element (M) does not form a chemical bond with the elements of the lithium cobalt oxide, and wherein the layered crystal structure in maintained at a positive electrode potential of more than 4.5 V (based on Li potential) when fully charged.
    Type: Application
    Filed: January 8, 2019
    Publication date: July 18, 2019
    Applicant: LG Chem, Ltd.
    Inventors: Sungbin Park, Younguk Park, Jiyoung Park, Bo Ram Lee, Chi Ho Jo, Hyuck Hur, Wang Mo Jung
  • Patent number: 10347913
    Abstract: The present invention provides a method for preparing a core-shell structured particle, the method using a continuous Couette-Taylor crystallizer in which a core reactant inlet, a shell reactant inlet, and a product outlet are sequentially formed on an outer cylinder along a flow direction of a fluid flowing in a Couette-Taylor fluid passage between the outer cylinder and an inner cylinder, wherein a core particle is primarily formed in the fluid passage by a core reactant supplied through the core reactant inlet; a shell layer is formed on a surface of the core particle to cover the core particle by a shell reactant supplied through the shell reactant inlet; and a core-shell structured particle in which the shell layer is formed on the circumference of the core particle, is discharged to the outside through the product outlet.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: July 9, 2019
    Assignees: LG Chem, Ltd., University-Industry Cooperation Group of Kyung Hee University
    Inventors: Woo Sik Kim, Khuong Dien Thai, Byung Chun Park, Seong Hoon Kang, Wang Mo Jung, Hong Kyu Park
  • Publication number: 20190169042
    Abstract: Provided is a cobalt precursor for preparing a lithium cobalt oxide of a layered structure which is included in a positive electrode active material, wherein the cobalt precursor is cobalt oxyhydroxide (CoM?OOH) doped with, as dopants, magnesium (Mg) and M? different from the magnesium.
    Type: Application
    Filed: December 20, 2017
    Publication date: June 6, 2019
    Applicant: LG Chem, Ltd.
    Inventors: Chi Ho Jo, Sungbin Park, Jiyoung Park, Bo Ram Lee, Hyuck Hur, Wang Mo Jung
  • Publication number: 20190165377
    Abstract: Disclosed are a cathode additive of a lithium secondary battery which may have improved crystallinity and a method for preparing the same. The cathode additive may be provided to suppress generation of oxygen gas or gelation of an electrode slurry composition, which may occur due to reduction in the content of residual by-products containing lithium oxide.
    Type: Application
    Filed: November 27, 2018
    Publication date: May 30, 2019
    Inventors: Hyelim Jeon, Donghun Lee, Sang Wook Lee, Seul Ki Kim, Eunsol Lho, Wang Mo Jung
  • Publication number: 20190165362
    Abstract: The present invention relates to a positive electrode active material for a secondary battery, which includes a core including a lithium composite metal oxide, and a surface treatment layer which is disposed on the core and includes an amorphous oxide containing a lithium (Li) oxide, a boron (B) oxide, and an aluminum (Al) oxide, wherein an amount of a lithium by-product present on a surface of the positive electrode active material is less than 0.55 wt % based on a total weight of the positive electrode active material, and a method of preparing the same.
    Type: Application
    Filed: February 2, 2018
    Publication date: May 30, 2019
    Applicant: LG Chem, Ltd.
    Inventors: So Ra Baek, Ji Hye Kim, Tae Gu Yoo, Wang Mo Jung, Byung Chun Park
  • Publication number: 20190165412
    Abstract: Disclosed are a cathode additive of a lithium secondary battery and a method of preparing the same. The lithium secondary may have high irreversible capacity and further improved capacity characteristics.
    Type: Application
    Filed: November 27, 2018
    Publication date: May 30, 2019
    Inventors: Hyelim Jeon, Donghun Lee, Eunsol Lho, Sang wook Lee, Wang Mo Jung
  • Publication number: 20190157658
    Abstract: The present invention provides a method of preparing a positive electrode active material for a secondary battery including preparing a first transition metal-containing solution including a nickel raw material, a cobalt raw material, and a manganese raw material and a second transition metal-containing solution including a nickel raw material, a cobalt raw material, and a manganese raw material in a concentration different from that of the first transition metal-containing solution; preparing a reaction solution, in which nickel manganese cobalt-based composite metal hydroxide particles are formed, by adding an ammonium cation-containing complexing agent and a basic compound as well as the second transition metal-containing solution to the first transition metal-containing solution and performing a co-precipitation reaction in a pH range of 11 to 13.
    Type: Application
    Filed: January 18, 2019
    Publication date: May 23, 2019
    Applicant: LG Chem, Ltd.
    Inventors: Sang Wook Lee, Wang Mo Jung, Seong Hoon Kang, Byung Chun Park, Ju Kyung Shin, Sang Min Park