Patents by Inventor Wayne Victor Sorin

Wayne Victor Sorin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10578804
    Abstract: An apparatus (2) can comprise an optical slab (4) comprising a rigid substrate of substantially transmissive material. The apparatus (2) can also comprise a WDM multiplexer (6) to receive and combine a plurality of optical signals (14, 16 and 20) at different wavelengths to form a combined optical signal (24) in the optical slab (4) having an aggregate power. The apparatus can further comprise a broadcaster (28) to distribute the combined optical signal (24) from the optical slab (4) to each of a plurality of different optical receivers (30, 32 and 34) with a fraction of the aggregate power of the combined optical signal (24).
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: March 3, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Georgios Panotopoulos, Michael Renne Ty Tan, Wayne Victor Sorin, David A. Fattal
  • Publication number: 20200049909
    Abstract: In some examples a silicon photonic (SiPh) solder reflowable assembly may comprise a silicon interposer bonded to an organic substrate, the silicon interposer having an optical grating disposed on the interposer to couple an optical signal, a lens array chip, the lens array comprising one or more lenses on a wafer, the lens array chip flip chip reflowed to the silicon interposer by a bonding agent and the one or more lenses having a predetermined shape that expands, collimates, and tilts a beam of the optical signal exiting the grating. The wafer has a coefficient of thermal expansion (CTE) that matches silicon and the one or more lenses and the grating are aligned in such a way the optical signal enters the grating at a desired angle.
    Type: Application
    Filed: January 30, 2017
    Publication date: February 13, 2020
    Inventors: Sagi Mathai, Michael Rene Ty Tan, Marco Fiorentino, Paul Kessler Rosenberg, David Kielpinski, Wayne Victor Sorin
  • Patent number: 10530129
    Abstract: In example implementations of a vertical-cavity surface-emitting laser (VCSEL), the VCSEL includes a p-type distributed Bragg reflector (p-DBR) layer end a p-type ohmic (p-ohmic) contact layer adjacent to the p-DBR layer. The p-DBR layer may include an oxide aperture and the p-ohmic contact layer may have an opening that is aligned with the oxide aperture. The opening may be filled with a dielectric material. A metal layer may be coupled to the p-ohmic contact layer and encapsulate the dielectric material.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: January 7, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Sagi Mathai, Michael Renne Ty Tan, Wayne Victor Sorin
  • Patent number: 10514508
    Abstract: In example implementations, an optical connector is provided. The optical connector includes a jumper holder, a base bracket, and an optical ferrule. The jumper holder holds a plurality of ribbon fibers. The base bracket is coupled to an electrical substrate to mate with the jumper holder. The optical ferrule is coupled to an end of each one of the plurality of ribbon fibers. The optical ferrule is laterally inserted into a corresponding orthogonal socket that is coupled to a silicon interposer on the electrical substrate to optically mate the optical ferrule to the orthogonal socket.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: December 24, 2019
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Kevin B. Leigh, Paul Kessler Rosenberg, Sagi Mathai, Mir Ashkan Seyedi, Michael Renne Ty Tan, Wayne Victor Sorin, Marco Fiorentino
  • Patent number: 10488593
    Abstract: In the examples provided herein, a polarization diversity receiver system includes a loop waveguide, and a two-dimensional grating coupler formed on the loop waveguide to couple light impinging on the grating coupler having a first polarization into the loop waveguide in a first direction, and to couple light having a second polarization orthogonal to the first polarization into the loop waveguide in a second direction. The system also includes a first output waveguide positioned near the loop waveguide in a first coupling region, a first distributed perturbation having a first resonant wavelength in the first coupling region to cause coupling of light at the first resonant wavelength between the loop waveguide and the first output waveguide, and a first photodetector to detect light propagating out of a first end and a second end of the first output waveguide.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: November 26, 2019
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Joaquin Matres, Wayne Victor Sorin, Stanley Cheung, Sagi Varghese Mathai, Michael Renne Ty Tan
  • Publication number: 20190331867
    Abstract: In example implementations, an apparatus is provided. The apparatus includes an optical transmission component and an optical reception component. The optical transmission component includes a plurality of lasers and a transmit filter. The plurality of lasers each emit a different wavelength of light. The transmit filter includes a plurality of different regions that correspond to one of the different wavelengths of light emitted by the plurality of lasers. The optical reception component includes a plurality of photodiodes and a complementary reverse order (CRO) filter. The CRO filter includes a same plurality of different regions as the transmit filter in a reverse order.
    Type: Application
    Filed: April 30, 2018
    Publication date: October 31, 2019
    Inventors: Kevin B. Leigh, Paul Kessler Rosenberg, Sagi Mathai, Wayne Victor Sorin, Michael Renne Ty Tan, Georgios Panotopoulos
  • Publication number: 20190331858
    Abstract: In example implementations, an optical connector is provided. The optical connector includes a jumper holder, a base bracket, and an optical ferrule. The jumper holder holds a plurality of ribbon fibers. The base bracket is coupled to an electrical substrate to mate with the jumper holder. The optical ferrule is coupled to an end of each one of the plurality of ribbon fibers. The optical ferrule is laterally inserted into a corresponding orthogonal socket that is coupled to a silicon interposer on the electrical substrate to optically mate the optical ferrule to the orthogonal socket.
    Type: Application
    Filed: April 30, 2018
    Publication date: October 31, 2019
    Inventors: Kevin B. Leigh, Paul Kessler Rosenberg, Sagi Mathai, Mir Ashkan Seyedi, Michael Renne Ty Tan, Wayne Victor Sorin, Marco Fiorentino
  • Publication number: 20190173584
    Abstract: Techniques related to optical devices including a high contrast grating (HCG) lens are described herein. In an example, an optical device includes a transparent substrate. A laser emitter or detector at a first side of the transparent substrate to emit or detect a laser light transmitted via the transparent substrate. A HCG lens is at a second side of the transparent substrate to transmit and refract the laser light.
    Type: Application
    Filed: January 17, 2019
    Publication date: June 6, 2019
    Inventors: Wayne Victor Sorin, MIchael Renne Ty Tan, David A. Fattal, Sagi Varghese Mathai
  • Publication number: 20190154920
    Abstract: In the examples provided herein, a polarization diversity receiver system includes a loop waveguide, and a two-dimensional grating coupler formed on the loop waveguide to couple light impinging on the grating coupler having a first polarization into the loop waveguide in a first direction, and to couple light having a second polarization orthogonal to the first polarization into the loop waveguide in a second direction. The system also includes a first output waveguide positioned near the loop waveguide in a first coupling region, a first distributed perturbation having a first resonant wavelength in the first coupling region to cause coupling of light at the first resonant wavelength between the loop waveguide and the first output waveguide, and a first photodetector to detect light propagating out of a first end and a second end of the first output waveguide.
    Type: Application
    Filed: April 8, 2016
    Publication date: May 23, 2019
    Inventors: Joaquin Matres, Wayne Victor Sorin, Stanley Cheung, Sagi Varghese Mathai, Michael Renne Ty Tan
  • Patent number: 10281651
    Abstract: An example device in accordance with an aspect of the present disclosure includes a slab to transmit light, and a plurality of lenses and filters disposed on first and second surfaces of the slab. The lenses include an anti-reflective coating on at least one of the plurality of lenses at an end of the slab to couple light through the anti-reflective coating, and a reflective coating disposed on remaining ones of the plurality of lenses to cause the lenses to reflect light. The filters are offset from the lenses to form an optical zig-zag.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: May 7, 2019
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Joaquin Matres, Michael Renee Ty Tan, Sagi Mathai, Wayne Victor Sorin, Paul Kessler Rosenberg
  • Publication number: 20190115722
    Abstract: In the examples provided herein, a data center transmission system includes a VCSEL (vertical-cavity surface-emitting laser) that lases in a single spatial mode with a side mode suppression ratio of at least 25 dB, where the VCSEL is formed on a substrate and lases at a wavelength transparent to the substrate, and further where an output of the VCSEL exits through the substrate. Also, the VCSEL is directly modulated. The system further includes an optical fiber having a first end to receive the output of the VCSEL for propagation along the optical fiber. The optical fiber supports a single spatial mode without supporting higher order spatial modes over a range of wavelengths between 1260 nm and 1360 nm. The system also includes a receiver to receive the directly modulated output of the VCSEL after propagation through the optical fiber.
    Type: Application
    Filed: April 1, 2016
    Publication date: April 18, 2019
    Applicant: Hewlett Packard Enterprise Development LP
    Inventors: Wayne Victor Sorin, Michael Renne Ty Tan, Sagi Varghese Mathai
  • Publication number: 20190113686
    Abstract: In the examples provided herein, a system includes an input waveguide, where a first end of the input waveguide is coupled to a light-emitting optical transmitter to allow the emitted light to enter the input waveguide, and a first ring resonator tunable to be resonant at a first resonant wavelength, wherein the first ring resonator is positioned near the input waveguide to couple a light at the first resonant wavelength from the input waveguide to the first ring resonator. The system also has a bus waveguide positioned to couple the light at the first resonant wavelength in the first ring resonator to the bus waveguide, and a mechanism to wavelength-tune the first ring resonator to a particular wavelength.
    Type: Application
    Filed: December 11, 2015
    Publication date: April 18, 2019
    Inventors: Joaquin Matres, Wayne Victor Sorin, Sagi Mathai, Lars Helge Thylen, Micheal Renne Ty Tan
  • Publication number: 20190064442
    Abstract: An apparatus (2) can comprise an optical slab (4) comprising a rigid substrate of substantially transmissive material. The apparatus (2) can also comprise a WDM multiplexer (6) to receive and combine a plurality of optical signals (14, 16 and 20) at different wavelengths to form a combined optical signal (24) in the optical slab (4) having an aggregate power. The apparatus can further comprise a broadcaster (28) to distribute the combined optical signal (24) from the optical slab (4) to each of a plurality of different optical receivers (30, 32 and 34) with a fraction of the aggregate power of the combined optical signal (24).
    Type: Application
    Filed: October 30, 2018
    Publication date: February 28, 2019
    Inventors: Georgios Panotopoulos, Michael Renne Ty Tan, Wayne Victor Sorin, David A. Fattal
  • Patent number: 10193632
    Abstract: Techniques related to optical devices including a high contrast grating (HCG) lens are described herein. In an example, an optical device includes a transparent substrate. A laser emitter or detector at a first side of the transparent substrate to emit or detect a laser light transmitted via the transparent substrate. A HCG lens is at a second side of the transparent substrate to transmit and refract the laser light.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: January 29, 2019
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Wayne Victor Sorin, Michael Renne Ty Tan, David A. Fattal, Sagi Varghese Mathai
  • Patent number: 10177872
    Abstract: An example system may include a first vertical cavity surface emitting laser (VCSEL) that includes a first integrated polarization locking structure to produce a polarized optical data signal. The system may also comprise a second VCSEL that includes a second integrated polarization locking structure, the second integrated polarization locking structure orthogonal to the first integrated polarization locking structure, to produce an orthogonally polarized optical data signal. Lenses may be disposed on the substrate opposite the first VCSEL, to collimate the polarized optical data signal, and opposite the second VCSEL to collimate the orthogonally polarized optical data signal. A polarization division multiplexer may combine the first collimated polarized optical data signal and the second collimated orthogonally polarized optical data signal.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: January 8, 2019
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Binhao Wang, Wayne Victor Sorin, Michael Renne Ty Tan, Sagi Mathai, Stanley Cheung
  • Patent number: 10162116
    Abstract: An apparatus can comprise an optical slab comprising a rigid substrate of substantially transmissive material. The apparatus can also comprise a WDM multiplexer to receive and combine a plurality of optical signals at different wavelengths to form a combined optical signal in the optical slab having an aggregate power. The apparatus can further comprise a broadcaster to distribute the combined optical signal from the optical slab to each of a plurality of different optical receivers with a fraction of the aggregate power of the combined optical signal.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: December 25, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Georgios Panotopoulos, Michael Renne Ty Tan, Wayne Victor Sorin, David A. Fattal
  • Publication number: 20180329159
    Abstract: Optical modules are disclosed. An example optical module includes a substrate comprising a grating coupler, an optical connector removably coupled to the substrate adjacent the grating coupler to optically couple the optical connector and the grating coupler and an integrated circuit coupled to the substrate.
    Type: Application
    Filed: January 30, 2015
    Publication date: November 15, 2018
    Inventors: Sagi Varghese MATHAI, Wayne Victor SORIN, Michael Renne Ty TAN
  • Patent number: 10120149
    Abstract: Examples herein relate to a Wavelength Division Multiplexing (WDM) optical module configured for M optical fibers, N WDM wavelengths and M×N optical signals. The module comprises an active silicon interposer, the interposer comprises a (M/2)×N array of photodetectors established on a front side of the interposer and N chips for the N WDM wavelengths. Each chip comprises M lenses for M optical signals, the M lenses established on a back side of a GaAs substrate, the M lenses comprising a first group of M/2 lenses to focus M/2 optical input signals onto M/2 photodetectors of the (M/2)×N array, and a second group of M/2 lenses to collimate M/2 optical output signals, and M/2 Vertical Cavity Surface Emitting Lasers (VCSELs) established on a front side of the GaAs substrate to generate the M/2 optical output signals.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: November 6, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Sagi Mathai, Wayne Victor Sorin, Michael Renne Ty Tan, Paul Kessler Rosenberg
  • Publication number: 20180275348
    Abstract: In the examples provided herein, a system includes a loop waveguide; and a grating coupler formed on the loop waveguide to couple light impinging on the grating coupler having a first polarization into the loop waveguide in a first direction, and to couple light having a second polarization, orthogonal to the first polarization, into the loop waveguide in a second direction. The system also includes a ring resonator positioned near the loop waveguide tuned to have a resonant wavelength at a first wavelength to couple light at the first wavelength out of the loop waveguide into the ring resonator. An output waveguide positioned near the ring resonator couples light out of the ring resonator into the output waveguide; and a photodetector detects light propagating out of a first end and a second end of the output waveguide.
    Type: Application
    Filed: December 11, 2015
    Publication date: September 27, 2018
    Inventors: Joaquin Matres, Wayne Victor Sorin, Sagi Mathai, Lars Heige Thylen, Michael Renne Ty Tan, Marco Fiorentino
  • Patent number: 10082684
    Abstract: A high contrast grating optical modulation includes an optical modulator at a front surface of a substrate to modulate received light. The high contrast grating optical modulation further includes a high contrast grating (HCG) lens adjacent to a back surface of the substrate opposite to the front surface to focus incident light onto the optical modulator. The substrate is transparent to operational wavelengths of the focused incident light and the modulated light.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: September 25, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Sagi Varghese Mathai, David A. Fattal, Michael Renne Ty Tan, Wayne Victor Sorin