Patents by Inventor Wayne Victor Sorin

Wayne Victor Sorin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170227714
    Abstract: A photonic interconnect apparatus includes tunable light devices, multiplexers to multiplex optical signals produced by the tunable light devices onto optical paths, and a cyclic arrayed waveguide grating (AWG) to receive the optical signals over the optical paths, and to direct a given optical signal of the received optical signals to a selected output of a plurality of outputs of the cyclic AWG based on a wavelength of the given optical signal. A respective demultiplexer directs the given optical signal to a selected output of a plurality of outputs of the respective demultiplexer according to which coarse wavelength band the wavelength of the given optical signal is part of.
    Type: Application
    Filed: January 29, 2015
    Publication date: August 10, 2017
    Inventors: Mike Schlansker, Jean Tourrilhes, Michael Renne Ty Tan, Joaquin Matres, Wayne Victor Sorin
  • Publication number: 20170010482
    Abstract: A high contrast grating optical modulation includes an optical modulator at a front surface of a substrate to modulate received light. The high contrast grating optical modulation further includes a high contrast grating (HCG) lens adjacent to a back surface of the substrate opposite to the front surface to focus incident light onto the optical modulator. The substrate is transparent to operational wavelengths of the focused incident light and the modulated light.
    Type: Application
    Filed: January 24, 2014
    Publication date: January 12, 2017
    Inventors: Sagi Varghese Mathai, David A. Fattal, Michael Renne Ty Tan, Wayne Victor Sorin
  • Publication number: 20160327746
    Abstract: Bidirectional optical multiplexing employs a high contrast grating as one or both of a beam-forming lens and a relay mirror. A bidirectional optical multiplexer includes the beam-forming lens to focus light. The light is one or both of a light beam internal to and another light beam external to the bidirectional optical multiplexer. The bidirectional optical multiplexer further includes an optical filter and the relay mirror. The optical filter is to selectively pass a portion of the internal light beam at a first wavelength and to reflect portions of the internal light beam at other wavelengths. The relay mirror is to reflect the internal light beam along a zigzag propagation path between the optical filter and the relay mirror.
    Type: Application
    Filed: January 25, 2014
    Publication date: November 10, 2016
    Applicant: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Sagi Varghese Mathai, Michael Renne Ty Tan, Georgios Panotopoulos, Wayne Victor Sorin, Paul Kessler Rosenberg
  • Publication number: 20160246008
    Abstract: An example device includes a first semiconductor component comprising at least two lasers to emit light at a first wavelength; a second semiconductor component comprising at least two lasers to emit light at a second wavelength, the first wavelength being different from the second wavelength; and an optical multiplexer to receive light from two lasers at the first wavelength and light from two lasers at the second wavelength. The optical multiplexer component includes a first output interface to couple light from one laser at the first wavelength and light from one laser at the second wavelength to a first optical fiber, and a second output interface to couple light from one laser at the first wavelength and light from one laser at the second wavelength beams to a second optical fiber.
    Type: Application
    Filed: October 31, 2013
    Publication date: August 25, 2016
    Inventors: Michael Renne Ty Tan, Sagi Varghese Mathai, Georgios Panotopoulos, Paul Kessler Rosenberg, Wayne Victor Sorin
  • Publication number: 20160238795
    Abstract: Loss compensated optical switching includes an optical crossbar switch and a wafer bonded semiconductor amplifier (SOA). The optical crossbar switch has a plurality of input ports and a plurality of output ports and is on a substrate of a first semiconductor material. The wafer bonded SOA includes a layer of second semiconductor material that is wafer bonded to a surface of the substrate such that a portion of the wafer bonded SOA semiconductor material layer overlies a portion of a port of the plurality of input ports. The second semiconductor material of the wafer bonded SOA is different from the first semiconductor material of the substrate.
    Type: Application
    Filed: October 9, 2013
    Publication date: August 18, 2016
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Michael Renne Ty Tan, Sagi Varghese Mathai, Wayne Victor Sorin, Paul Kessler Rosenberg
  • Publication number: 20160195677
    Abstract: A device includes a first element and a second element. The first element includes a plurality of mirrors formed as concave features on the first element. The second element is to support a plurality of filters. The first element is coupleable to the second element to align the plurality of mirrors relative to the plurality of filters to operate as a multiplexer or de-multiplexer.
    Type: Application
    Filed: August 21, 2013
    Publication date: July 7, 2016
    Inventors: Georgios Panotopoulos, Paul Kessler Rosenberg, Michael Renne Ty Tan, Wayne Victor Sorin, Sagi Varghese Mathai
  • Patent number: 9354388
    Abstract: A composite wafer includes a molded wafer and a second wafer. The molded wafer includes a plurality of first components, and the second wafer includes a plurality of second components. The second wafer is combined with the molded wafer to form the composite wafer. At least one of the first components is aligned with at least one of the second components to form a multi-component element. The multi-component element is singulatable from the composite wafer.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: May 31, 2016
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Michael Renne Ty Tan, Georgios Panotopoulos, Paul Kessler Rosenberg, Sagi Varhgese Mathai, Wayne Victor Sorin, Susant K. Patra
  • Patent number: 9354410
    Abstract: A monolithically integrated, self-aligning, optical-fiber ferrule for a pigtailed opto-electronic module. The ferrule includes a body, a cavity defined within the body, a lateral alignment structure, and an optical-fiber stop. The cavity is to accept and align an optical fiber with an end of the cavity to face an optical aperture of an opto-electronic component. The lateral alignment structure is to self-align laterally the optical fiber with the optical aperture. The optical-fiber stop is coupled to the body, to self-align vertically the optical fiber. The body, the cavity, the lateral alignment structure and the optical-fiber stop are integrated together as a portion of a monolithically integrated chip. A system and a pigtailed opto-electronic engine that include the ferrule are also provided.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: May 31, 2016
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Sagi Varghese Mathai, Michael Renne Ty Tan, Paul Kessler Rosenberg, Wayne Victor Sorin, Georgios Panotopoulos
  • Publication number: 20160149646
    Abstract: Techniques related to optical devices including a high contrast grating (HCG) lens are described herein. In an example, an optical device includes a transparent substrate. A laser emitter or detector at a first side of the transparent substrate to emit or detect a laser light transmitted via the transparent substrate. A HCG lens is at a second side of the transparent substrate to transmit and refract the laser light.
    Type: Application
    Filed: May 22, 2013
    Publication date: May 26, 2016
    Inventors: Wayne Victor Sorin, Michael Renne Ty Tan, David A. Fattal, Sagi Varghese Mathai
  • Patent number: 9337623
    Abstract: Apparatuses and methods for high density laser optics are provided. An example, of a laser optics apparatus includes a plurality of vertical cavity surface emitting lasers (VCSELs) in a monolithically integrated array, a high contrast grating (HCG) integrated with an aperture of a vertical cavity of each of the plurality of the VCSELs to enable emission of a single lasing wavelength of a plurality of lasing wavelengths, and a plurality of single mode waveguides, each integrated with a grating coupler, that are connected to each of the plurality of the integrated VCSELs and the HCGs, where each of the grating couplers is aligned to an integrated VCSEL and HCG.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: May 10, 2016
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Michael Renne Ty Tan, David A. Fattal, Wayne Victor Sorin, Sagi Mathai
  • Publication number: 20160072256
    Abstract: A mode-controlled laser system includes an active region to generate optical energy in response to an electric signal. The system also includes a mirror to resonate the optical energy in an optical cavity. The system also includes a HCG mode control reflector arranged in the optical cavity to control the resonated optical energy into a substantially non-Gaussian intensity profile. The resonated optical energy can be emitted as an optical signal having the substantially non-Gaussian intensity profile.
    Type: Application
    Filed: June 20, 2013
    Publication date: March 10, 2016
    Inventors: Wayne Victor Sorin, Michael Renne Ty Tan, David A. Fattal, Marco Fiorentino
  • Patent number: 9268107
    Abstract: One example relates to an optical engine comprising an optical waveguide. The optical waveguide can comprise a total internal reflection (TIR) edge to change direction of an optical light beam to an angle parallel to a top surface and a bottom surface of the optical waveguide. The optical waveguide can also comprise a plurality of aligning holes extending from the top surface to the bottom surface of the optical waveguide. The optical engine can comprise a substantially transparent slab underlying the optical waveguide. The slab can also comprise a micro lens to collimate the optical light beam. The slab can further comprise a plurality of aligning pins extending perpendicular from a top surface and bottom surface of the slab. Each of the plurality of aligning pins can extend through a respective one of the plurality of aligning holes.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: February 23, 2016
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Michael Renne Ty Tan, Sagi Varghese Mathai, Wayne Victor Sorin, Arlen L Roesner, Glenn C. Simon
  • Publication number: 20160013870
    Abstract: An optical coupling system includes an optical signal source to provide an optical signal from an aperture. The system also includes a substantially planar high-contrast grating (HCG) lens to convert an optical mode of the optical signal to provide a converted optical signal having a mode-isolating intensity profile. The system further includes an optical element to receive the converted optical signal. The optical signal source and the substantially planar HCG lens can be arranged to substantially mitigate coupling of a reflected optical signal associated with the converted optical signal that is reflected from the optical element to the aperture of the optical signal source based on a reflected mode-isolating intensity profile.
    Type: Application
    Filed: April 11, 2013
    Publication date: January 14, 2016
    Inventors: Wayne Victor SORIN, Sonny VO, David A. FATTAL, Michael Renne Ty TAN
  • Patent number: 9164249
    Abstract: A glass-silicon wafer stacked platform. The platform includes a plurality of silicon pillars defining a ferrule receptacle, a silicon spacer connected to bases of the pillars and enclosing an aperture, a glass wafer bonded to the spacer, a microlens array formed in a first surface of the glass wafer and located in the aperture, conductive material carried by a second surface of the glass wafer, and contacts in electrical communication with the conductive material.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: October 20, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Sagi Varghese Mathai, Michael Renne Ty Tan, Wayne Victor Sorin, Paul Kessler Rosenberg, Georgios Panotopoulos, Susant K Patra
  • Publication number: 20150205061
    Abstract: One example relates to an optical engine comprising an optical waveguide. The optical waveguide can comprise a total internal reflection (TIR) edge to change direction of an optical light beam to an angle parallel to a top surface and a bottom surface of the optical waveguide. The optical waveguide can also comprise a plurality of aligning holes extending from the top surface to the bottom surface of the optical waveguide. The optical engine can comprise a substantially transparent slab underlying the optical waveguide. The slab can also comprise a micro lens to collimate the optical light beam. The slab can further comprise a plurality of aligning pins extending perpendicular from a top surface and bottom surface of the slab. Each of the plurality of aligning pins can extend through a respective one of the plurality of aligning holes.
    Type: Application
    Filed: July 30, 2012
    Publication date: July 23, 2015
    Inventors: Michael Renne Ty Tan, Sagi Varghese Mathai, Wayne Victor Sorin, Arlen L. Roesner, Glenn C. Simon
  • Publication number: 20150188291
    Abstract: Apparatuses and methods for high density laser optics are provided. An example, of a laser optics apparatus includes a plurality of vertical cavity surface emitting lasers (VCSELs) in a monolithically integrated array, a high contrast grating (HCG) integrated with an aperture of a vertical cavity of each of the plurality of the VCSELs to enable emission of a single lasing wavelength of a plurality of lasing wavelengths, and a plurality of single mode waveguides, each integrated with a grating coupler, that are connected to each of the plurality of the integrated VCSELs and the HCGs, where each of the grating couplers is aligned to an integrated VCSEL and HCG.
    Type: Application
    Filed: March 10, 2015
    Publication date: July 2, 2015
    Inventors: Michael Renne Ty Tan, David A. Fattal, Wayne Victor Sorin, Sagi Mathai
  • Publication number: 20150117823
    Abstract: A fiber connector assembly is provided. The fiber connector assembly includes a fiber connector, a zig-zag member, a signal direction element, and a signal splitting element. The fiber connector receives an input signal from an input fiber. The zig-zag member relays the input signal using a plurality of relay mirrors. The signal direction element directs the input signal and the output signal. The signal splitting element separates the output signal from the input signal. The fiber connector couples the output signal to an output fiber.
    Type: Application
    Filed: May 24, 2012
    Publication date: April 30, 2015
    Inventors: Georgios Panotopoulos, Michael Renne Ty Tan, Paul Kessler Roserberg, Wayne Victor Sorin, Sagi Varghese Mathai, Susant K. Patra
  • Patent number: 8983248
    Abstract: A computing system includes an optical transmission media to propagate a single-mode signal and a multimode signal, and support mode matching with the single-mode signal and multimode signal. A lowest-order mode of the optical transmission media is to couple the single-mode signal, and at least one higher-order mode of the optical transmission media is to couple the multimode signal. The optical transmission media is to enable extraction of the single-mode signal from the optical transmission media independently of the multimode signal.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: March 17, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Wayne Victor Sorin, Michael Renne Ty Tan
  • Patent number: 8934745
    Abstract: According to an example, an apparatus for use in optoelectronics includes a bottom transparent layer, a top transparent layer having a top surface, a lens sandwiched between the bottom transparent layer and the top transparent layer, and a first alignment element attached to the top surface of the top transparent layer, wherein the first alignment element is offset with respect to the lens and is to mate with a mating alignment element on an optical transmission medium.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: January 13, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Sagi Varghese Mathai, Michael Renne Ty Tan, Paul Kessler Rosenberg, Wayne Victor Sorin
  • Publication number: 20150003792
    Abstract: A monolithically integrated, self-aligning, optical-fiber ferrule for a pigtailed opto-electronic module. The ferrule includes a body, a cavity defined within the body, a lateral alignment structure, and an optical-fiber stop. The cavity is to accept and align an optical fiber with an end of the cavity to face an optical aperture of an opto-electronic component. The lateral alignment structure is to self-align laterally the optical fiber with the optical aperture. The optical-fiber stop is coupled to the body, to self-align vertically the optical fiber. The body, the cavity, the lateral alignment structure and the optical-fiber stop are integrated together as a portion of a monolithically integrated chip. A system and a pigtailed opto-electronic engine that include the ferrule are also provided.
    Type: Application
    Filed: January 31, 2012
    Publication date: January 1, 2015
    Inventors: Sagi Varghese Mathai, Michael Renne Ty Tan, Paul Kessler Rosenberg, Wayne Victor Sorin, Georgios Panotopoulos